DEPARTMENT OF TRANSPORTATION

Tailgate Test Kit for Determining Appropriate Sediment Reducing Chemicals and Dose Rates

Joel Toso, PhD, Principal Investigator Wenck Associates, Inc.

July 2017

Research Project Final Report 2017-32 To request this document in an alternative format, such as braille or large print, call <u>651-366-4718</u> or <u>1-800-657-3774</u> (Greater Minnesota) or email your request to <u>ADArequest.dot@state.mn.us</u>. Please request at least one week in advance.

Technical Report Documentation Page

1. Report No.	2.	3. Recipients Accession No.			
MN/RC 2017-32					
4. Title and Subtitle		5. Report Date			
Tailgate Test Kit for Determining A	Appropriate Sediment	July 2017	July 2017		
Reducing Chemicals and Dose Rat	es	6.			
7. Author(s)		8. Performing Organization F	Report No.		
Joel Toso, Kirby Templin					
9. Performing Organization Name and Address		10. Project/Task/Work Unit	No.		
Wenck Associates, Inc.					
7500 Olson Memorial Hwy		11. Contract (C) or Grant (G)	No.		
Ste 300		(C) 1001565			
Golden Valley, MN 55427					
12. Sponsoring Organization Name and Addres	SS	13. Type of Report and Perio	od Covered		
Minnesota Department of Transpo	ortation	Final Report			
Research Services & Library		14. Sponsoring Agency Code			
395 John Ireland Boulevard, MS 3	30				
St. Paul, Minnesota 55155-1899					
15. Supplementary Notes					
http:// mndot.gov/research/repo	rts/2017/201732.pdf				
16. Abstract (Limit: 250 words)					
This study develops a Tailgate Tes			•		
construction stormwater discharg	-				
which site soils are exposed to ero					
also varies depending on the site		-	-		
determine which of the numerous	sly available flocculant product	s works well for a parti	cular construction site.		
17. Document Analysis/Descriptors		18. Availability Statement			
flocculating agents, turbidity, rund	off	No restrictions. Document available from:			
		National Technical Information Services,			
		Alexandria, Virginia 22312			
19. Security Class (this report)	20. Security Class (this page)	21. No. of Pages	22. Price		
Unclassified	Unclassified	223			

Tailgate Test Kit for Determining Appropriate Sediment Reducing Chemicals and Dose Rates

FINAL REPORT

Prepared by:

Joel Toso, PhD, PH, PE Kirby Templin, PE Wenck Associates, Inc.

July 2017

Published by:

Minnesota Department of Transportation Research Services & Library 395 John Ireland Boulevard, MS 330 St. Paul, Minnesota 55155-1899

This report represents the results of research conducted by the authors and does not necessarily represent the views or policies of the Minnesota Department of Transportation or Wenck Associates, Inc. This report does not contain a standard or specified technique.

The authors, the Minnesota Department of Transportation, and Wenck Associates, Inc. do not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to this report because they are considered essential to this report.

TABLE OF CONTENTS

CHAPTER 1: Introduction1
1.1 Project Objectives1
1.2 Products Tested in Study1
1.3 Samples Information2
CHAPTER 2: Methods
2.1 TAilgate Test Kit Description5
2.2 Testing Methods and Product Test Worksheets5
2.3 Scaling Test Results to Full Scale Application7
2.4 Flocculation Best Management Practice8
2.5 New Product Worksheet Development and Testing8
2.6 Residual/Unreacted Product Testing9
2.6.1 Residual Testing by Mixing Untreated Sample with Product Treated Sample9
2.6.2 Individual Product Residual Tests10
2.6.3 Maximum Product Dosing Limit Method11
2.6.4 Environmental stress Indication Test11
2.7 Safety, Storage, Handling, and Spill Management11
CHAPTER 3: Results
3.1 Test Performance Summary13
3.2 Results Summary14
3.3 Visual Observations14
CHAPTER 4: Conclusion and Recommendations15
4.1 Conclusion15
4.2 Recommendations for Next Steps15
REFERENCES

APPENDIX A Task 2: Review Previous Research APPENDIX B Task 3: Tailgate Test Kit Description Appendix C Complete Study Test Worksheets APPENDIX D Task 4: Tailgate Test Kit Worksheets APPENDIX E Task 5: Procedures to Scale Test Kit Results APPENDIX F Task 5: Procedures to Test New Products APPENDIX G Results APPENDIX H Field Notes APPENDIX I Photos

LIST OF FIGURES

Figure 1.1 Sample Locations.	.4
------------------------------	----

LIST OF TABLES

Table 1.1 Products Identified for use in the Tailgate Test Study.	. 2
Table 1.2 Samples Tested	. 2
Table 3.1 Test Results that Achieved Target Turbidity Goal of 50 NTU	13

EXECUTIVE SUMMARY

This study develops a Tailgate Test Kit to be used in the field to test flocculants for reducing turbidity in construction stormwater discharge. Turbidity of stormwater runoff at construction sites varies depending on which site soils are exposed to erosion. Previous research shows that the effectiveness of different flocculants also varies depending on the site soils. As the name suggests, the Tailgate Test Kit is a mobile means to efficiently determine which of the numerously available flocculant products works well for a particular construction site.

Thirteen flocculant products of various classifications were obtained from product representatives. Stormwater samples from eight different sites were collected for product testing to develop product mixing and dosing guidance. Initially, worksheets with mixing and dosing guidance were developed for the 13 products. The worksheets help identify the effective product dose to achieve the target turbidity goal. Scaling procedures are provided to guide converting the test results into the dosing rates for full scale product application.

Based on testing results of 13 products, a shortened list of five tests was recommended for use in the Tailgate Test Kit. These five tests provide a range of flocculant product classifications while greatly reducing the testing time required. If new products are to be considered for the Tailgate Test Kit, procedures to test these products are provided.

Four methods for testing residual/unreacted products were investigated based on suggestions from product representatives and research. Observations were made during product testing which raised several questions regarding the feasibility of these methods for testing residual product. A preferred method was not identified for use in the Tailgate Test Kit. It is recommended that residual testing is investigated further. Suggested methods include:

- Mixing untreated sample with product-treated sample
- Individual product residual tests
- Maximum product dosing limits
- Environmental stress indication test

In addition to further investigation of residual testing, it is recommended that testing of new products be continued as they are developed and funding exists.

CHAPTER 1: INTRODUCTION

1.1 PROJECT OBJECTIVES

The research presented in the following report was conducted to develop a Tailgate Test Kit to be used for field testing flocculant products for reducing turbidity in construction stormwater discharge. The specific objectives include:

- Develop an on-site Tailgate Test Kit to be used to test flocculant products on construction stormwater discharge.
- Develop dosing and mixing guidance for testing the flocculant products.
- Develop guidance for determining an effective product dose to meet target turbidity goals. The effective dose can also be used to evaluate cost effectiveness for full-scale product application to construction stormwater discharge.
- Develop a procedure to scale product test results to full-scale product application to construction stormwater discharge.
- Develop a method for testing/detecting residual/unreacted products in construction stormwater discharge to reduce the potential for overdosing.
- Provide guidance to prevent overdosing, and what actions to take if product spillage occurs.

1.2 PRODUCTS TESTED IN STUDY

The flocculant products used in this study were identified based on the following:

- Input from the Technical Advisory Panel (TAP) included MnDOT staff, a representative from a watershed district, and other consultants;
- Review of previous research by Dreschel (2014); and
- Review of other state Department of Transportation (DOTs).

Appendix A provides a review of previous research.

The product list was developed to represent a variety of products, and product types, to adequately test and develop the "Tailgate Test Kit." Since products, or product types, may vary in effectiveness on different soil types and environmental conditions, the product list was created to include a range.

The product manufacturers were contacted to discuss their products and to identify the best product to include in this study. Based on the manufacturer recommendations, the products identified for use in the study are detailed in Table 1.1.

Product Name	Manufacturer	Product Classification/Family ¹
FLOC 06	Innovative Turf Solutions	Mineral
SCI CW-A0	Standard Contracting	Mineral
Earth Poly-Stable Plus	Earth and Road	Polyacrylamide
Liquifloc 1%	Dober	Chitosan
LBP 2101	Dober	Biopolymer
Biostar-CH 2%	Hild and Associates	Chitosan/Biopolymer
APL Bridger	Hild and Associates	Polyacrylamide
APS 703d#3 Floc	Applied Polymer Systems,	Anionic
Log	Inc.	Polyacrylamide
APS 706b Floc Log	Applied Polymer Systems,	Anionic
AFS 7000 FIUC LUg	Inc.	Polyacrylamide

Table 1.1 Products Identified for use in the Tailgate Test Study.

¹ The product classification/family for each product was provided by the product manufacturers.

This list is not a comprehensive list. It is recommended that additional products be tested and considered for use in the Tailgate Test Kit as funding allows.

1.3 SAMPLES INFORMATION

There were eight samples collected to test the products and help develop the Tailgate Test Kit. Samples were collected from a variety of locations throughout Minnesota that provide varying test conditions (specifically soil type and possibly other environmental factors). The eight samples are described in Table 1.2. Figure 1.1 shows the locations of the samples.

Table 1.2 Samples Tested.

Sample ID	Location	Initial Turbidity (NTU) ¹	Number of Products Tested
Test Sample	Synthetic sample made from pond sediments	~10001	13
Sample 1	From a discharge hose at a St. Croix River construction site	~10001	13
Sample 2	From a discharge hose at a Hwy 53 (northern MN) construction site	~10001	13

Sample ID	Location	Initial Turbidity (NTU) ¹	Number of Products Tested
Sample 3	From a discharge hose at a St. Paul Technical College construction site	Significantly greater than 1000	13
Sample 4	Created from a soil sample and water collected at a Hwy 371 (central MN) construction site	~500	13
Sample 5	Grab samples from three separate BMPs from a Hwy 36 and Lex. Ave. construction site in Roseville.	~100, 280, and >1000	5 (onsite testing with the Tailgate Test Kit)
Sample 6	Grab sample from a Hwy 96 (north metro) construction site runoff	~500	5 (onsite testing with the Tailgate Test Kit)
Sample 7	Synthetic sample made a Nemadji River construction site soil and distilled water	>1000	5

¹ At the time of testing the sample, the turbidity meter that was used was later identified to not provide reliable measurements greater than 100 NTU. The sample was not able to be tested with a turbidity meter with a range up to 1000 NTU, but based on sample observations the initial turbidity was estimated at approximately 1000 NTU. Although the turbidity meter measurements greater than 100 NTU were not reliable and were excluded, the measurements less than 100 NTU were reliable and included.

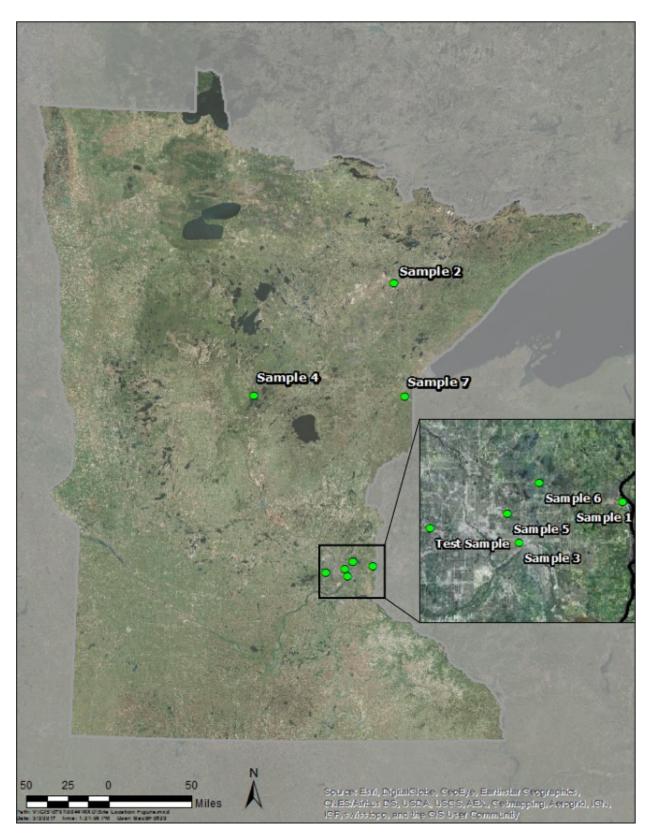


Figure 1.1 Sample Locations.

CHAPTER 2: METHODS

This section provides the following information:

- A description of the development of the Tailgate Test Kit,
- The methods and guidance on performing the tests,
- Steps to develop a new product test,
- Scaling test results to full scale product application, and
- An evaluation of product residual.

2.1 TAILGATE TEST KIT DESCRIPTION

The Tailgate Test Kit is a mobile field kit for performing bench test scale product tests to identify effective flocculant products that can be scaled to treat construction stormwater discharge. A detailed description of the Tailgate Test Kit that was developed for use in this study is provided in Appendix B. The important items are listed below.

- A turbidity meter.
- Sample/test containers.
- Dose measurement tools.
- Field documentation worksheets.
- The products to be tested.
- Personal protective equipment (PPE).

Additional items that are not necessary to perform the product tests, but are helpful with conducting the tests include:

- Timer or stopwatch.
- Meter for pH and temperature.
- Mixing utensils to mimic full scale mixing method.
- Storage containers for organization.
- Supplies for cleaning the testing equipment and garbage collection.

2.2 TESTING METHODS AND PRODUCT TEST WORKSHEETS

The primary purpose of the Tailgate Test is to answer the following questions:

- What product(s) work to reduce the turbidity of construction stormwater discharge to achieve the turbidity goal?
- What is the effective product dose?

To help answer these questions, worksheets were created for 13 tests show below that include mixing and dosing guidance, data collection tables, and space for observation notes or calculations.

- Test 1 Control (No Products Tested)
- Test 2 Floc 06
- Test 3 SCI-CW-A0
- Test 4 Earth Poly-Stable Plus
- Test 5 Liquifloc 1%
- Test 6 LB2101 (first) then Liquifloc 1% (second)
- Test 7 Biostar-CH 2%
- Test 8 APL Bridger
- Test 9 Biostar-CH 2% (first) then APL Bridger (second)
- Test 10 APL Bridger (first) then Biostar-CH 2% (second)
- Test 11 APS 703d#3 Floc Log
- Test 12 APS 706b Floc Log
- Test 13 APS 703d#3 Floc Log and APS 706b Floc Log (Simultaneously)

The worksheets for the 13 tests are provided in Appendix C.

In general, performing a product test worksheet typically takes between 30-60 minutes depending on test results. Due to the time necessary to complete the test worksheet for each product, a shortened list of five tests is proposed for use in the Tailgate Test Kit. This list was developed based on test results and observations. The worksheets for the five tests proposed for use in the Tailgate Test Kit are available in Appendix D. The shortened list of tests includes:

- Test 1 Control (No Products Tested)
- Test 2 Floc 06
- Test 3 SCI-CW-A0
- Test 5 Liquifloc 1%
- Test 7 Biostar-CH 2%

Specific guidance for each test is provided in the worksheets of Appendices C and D. A typical test is summarized in the following steps.

- Collect a sample for testing that is representative of the construction stormwater discharge that is to be treated. Ideally, this would be a sample from the end of the discharge hose. Collect enough sample to complete all the tests expected to be performed. Once collected, separate the sample into the testing containers (one for each product/test).
- Begin completing the worksheets for each test. It is important to complete Test 1 which is the control. This establishes the initial sample conditions that can be used to compare to the product tests results.
- The first step to complete for each product test is the "Rapid Test" check. The Rapid Test is simply a check to see if the product will work and is completed by overdosing the sample with large amounts of the product to see if a reaction occurs. A visual observation is made to determine if the product will provide results that can meet the target goal.

- Once the Rapid Tests are completed, perform the "Dosage Estimation Test" for the products that appear to work on the sample. When performing the "Dosage Estimation Test" for each product, follow the mixing and dosing guidance on the test worksheets.
- Each dose/mixing step includes adding a dose of the product, mixing the product, and letting sit for typically 30 seconds to 1 minute. At the end of the 30 seconds to 1 minute, if a reaction is noticed, the sample needs to be undisturbed to allow for settling for approximately 5 minutes. After 5 minutes, a turbidity measurement can be collected to compare to the target turbidity goal. If no reaction is noticed at the end of the 30 seconds to 1 minute, then repeat an additional dose/mixing step until target turbidity levels are met.
- A turbidity measurement is collected after a reaction is noticed by pipetting or decanting a portion of the sample into a cuvette or test tube to be measured by a calibrated turbidity meter.
- The incremental dose/mixing steps allow for a dose-turbidity curve to be generated which can be used to identify the effective product dose necessary for full scale application. It is important to record the cumulative doses that have been added and the corresponding turbidity measurements so this curve can be generated.
- After the test has been completed, it is beneficial to measure the final pH and temperature of the sample.

Once the tests are completed and results are evaluated, the product(s) that work and the effective doses are identified. The results can then be used to scale up for treatment of the construction stormwater discharge to meet turbidity goals.

2.3 SCALING TEST RESULTS TO FULL SCALE APPLICATION

The Tailgate Test Kit provides the tools needed to complete the product test worksheets that help identify the effective dose to meet target turbidity goals. Ultimately, the test results are scaled to treat construction stormwater discharge. The difficulty in scaling test results is to convert the test result to the proper dosing rate for application to the construction stormwater discharge. A detailed procedure for scaling the test results are included as Appendix E. The following summarize the scaling process:

- Determine/estimate the total volume of water to be treated.
- Identify the construction stormwater discharge rate that is going to be treated.
- Select the product to use.
- Identify the effective product dose needed to treat the sample volume.
- Estimate total product needed to treat the total volume to target turbidity goal.
- Estimate the product dose rate to treat the construction stormwater discharge rate.
- Monitor reduction results during full scale product application. Adjust dose rate as necessary to achieve target turbidity goal.

If several products were determined to be effective, the total amount of each product required coupled with its respective cost can be used to identify the most cost-effective option.

2.4 FLOCCULATION BEST MANAGEMENT PRACTICE

During full scale product application, flocculation products can be applied through many application methods to treat high turbidity construction stormwater discharge. Some of the delivery and application methods include:

- Directly applying product to the surface of a storage BMP (mixing mechanism may be required;
- Direct injection to surface flow and/or pipe flow; and
- Passive dosing installed instream, within a conveyance system or at a concentrated discharge point like an inlet.

The effectiveness of each delivery method is the result of the associated mixing process. It is important to test and mix the flocculants in the tailgate test similarly to the mixing that is anticipated during large scale application.

After product application, the treated discharge should be routed to a settling BMP to allow floc particles to settle prior to discharging to the downstream water body. Based on test observations from this study, it is also recommended that a filter is incorporated into the floc removal plan located after the settling BMP. See links in Appendix A to diagrams of dosing methods.

2.5 NEW PRODUCT WORKSHEET DEVELOPMENT AND TESTING

It was not feasible to test all products in the Tailgate Test Kit Study. The procedure to test new products was developed so that additional products can be tested and included in the Tailgate Test Kit in the future. The detailed steps for testing a new product are included in Appendix F. An overview of this procedure is provided below.

- Contact manufacturer to obtain a sample of the product.
- Obtain available product information from the manufacturer including Material Safety Data Sheet (MSDS), and mixing and dosing guidelines.
- Begin testing of new product following manufacturer mixing and dosing guidelines.
- Typically, first a product dose is added to the sample, the sample is mixed, and then the sample is observed for a reaction. The specific testing steps will depend on product and manufacturer recommendations.
- If a reaction is noticed, a turbidity measurement should be collected for developing doseturbidity curves.
- Repeat the dose, mixing, observation, and turbidity measurement as needed to achieve the target turbidity goal.
- Repeat test on multiple stormwater samples (typically 3-5, but as needed) to develop the dosing and mixing recommendations.
- After testing the samples, review the results and make a determination if a worksheet should be developed for the product and included in the Tailgate Test Kit.

- The worksheet should include the mixing and dosing guidance, and a data table. Review other product worksheets for guidance.
- Identify the product weight conversions that are helpful with scaling test results to full scale product application.

Once the product has been tested and a worksheet developed for field testing, the product can be included in the Tailgate Test Kit.

2.6 RESIDUAL/UNREACTED PRODUCT TESTING

Creating a residual test to detect unreacted product in the construction stormwater discharge reduces the chance for overdosing at full scale applications. Four methods for testing residual/unreacted product were investigated and discussed below.

2.6.1 Residual Testing by Mixing Untreated Sample with Product Treated Sample

The idea of mixing untreated sample with the product treated sample is if a reaction occurred, this would indicate that residual product is present. This test method would require knowing the untreated sample turbidity, the product treated sample turbidity, and an accurate estimate of what the combined turbidity should be prior to a reduction due to residual product (if any) after mixing the two together. The feasibility of this method as a reliable residual test became questionable after testing the products on several samples. Observations were made that may not make this method feasible for testing residual product. These observations include:

- For many of the samples, a reaction was not noticed or measurable until enough incremental product doses were added to cause a significant reaction.
- After a reaction was noticed, the turbidity measured was dependent on the time allowed for settling of floc particles.

These observations generate questions regarding the feasibility of this method as a residual test. It is not clear if the observations mean a threshold dose may be required before a measurable reaction occurs. If this is the case, there may be residual product, but not enough to cause a measurable reaction. Also, does the product bind to particles when no reaction is observed and there just isn't enough product to generate larger floc reactions, or is the product not binding to the particles until enough product is dosed to cause a reaction? For both scenarios, the residual test method described above would not identify residual product because a measurable reaction does not occur.

The time that is allowed for settling of floc particles prior to a turbidity measurement does impact the turbidity measured. A turbidity measurement taken after a short settling time is higher than compared to a turbidity measurement taken after a longer settling time. This means that it may be difficult to distinguish between a reduction due to a residual reaction, or a reduction due to the settling time prior to testing the turbidity of the mixed samples (untreated mixed with treated). After mixing the samples, time will need to be allowed for the reaction (if any) and subsequent settling of floc to occur prior to

turbidity measurement. Therefore, it may be difficult to determine if there is residual product with this method.

2.6.2 Individual Product Residual Tests

Based on conversations with product manufacturers, there may be specific residual tests for each product, or product type. The manufacturers of the products identified for use in the Tailgate Test Kit were contacted to further discuss residual testing of their products.

2.6.2.1 Residual Testing of Product SCI-CW-A0

The manufacturer of product SCI-CW-A0 indicated that a laboratory test could be performed to test unreacted residual product. This test cannot be completed in the field and is a polymonomer acrilimide LC/MS test.

The manufacturer also recommended a couple observations/field level tests that could indicate an overdose with residual/unreacted product. These non-quantitative observations/field level tests include:

- After agitation of the test sample and/or the treated surface water look for a cloudy gray/white appearance. If gray/white appearance is present, the water has been overdosed.
- After settlement of floc particles, pour water over fingers and rub them together. If water feels slippery, you have residual product over the recommended dosage.

2.6.2.2 Residual Testing of Product FLOC-06

Based on conversations with the manufacturer of Floc 06, it is understood that the Floc 06 product is insoluble. As a result, residual floc 06 product is in a particulate form. A laboratory test for total suspended solids (TSS) could be performed to test for residual product, however, it may be difficult to distinguish residual Floc 06 Product from other particulates showing up as TSS.

The manufacturer also recommended a field level observation test that could indicate an overdose with residual/unreacted product. The observation is simply to check visually if there is residual/unreacted Floc 06 since the Floc product swells and creates a visible solid that is insoluble.

2.6.2.3 Residual Testing of Liquifloc 1% and Other Chitosan Based Products

Based on conversations with the manufacturer of the Liquifloc 1% product, there is a test that is available for purchase that can test chitosan based products in the field. This test is capable of testing the residual of chitosan based products down to 0.1 ppm. This residual test kit was not tested in developing the Tailgate Test Kit.

2.6.3 Maximum Product Dosing Limit Method

A single residual test that would work for all products, and product types, may not be feasible. Additionally, it may not be desirable to have several different product specific tests. An alternative method to testing residual would be to establish maximum dosing limits for each approved product. For this approach, there may be the possibility of some residual/unreacted product during application. The state of Wisconsin uses maximum dosing limits as the method for regulating product application (WDNR 2015).

2.6.4 Environmental stress Indication Test

Another possible alternative approach to testing residual could be performing an environmental stress indication test. The environmental stress indication test could monitor an environmental sensitivity indicator such as a minnow in the product treated sample for a predetermined time. The result of the test could indicate the potential environmental impact.

2.7 SAFETY, STORAGE, HANDLING, AND SPILL MANAGEMENT

Prior to using one of the products included in this study, or a new product, the manufacturers product Material Safety Data Sheet (MSDS) should be reviewed for proper safety, storage, handling, and spill management.

The manufacturer safety recommendations should be followed while using the products. In general, for the products tested in this study, safety recommendations for all handling applications includes minimum level D Personal Protective Equipment (PPE) which includes:

- Long pants,
- A shirt with sleeves,
- Safety glasses, and
- Closed toe work boots.

Proper hygiene procedures should also be followed while handling the products such as washing hands after handling the chemicals. In addition, do not eat, drink, smoke or apply cosmetics until hands have been washed and do not ingest any of the products. To assist with the handling recommendations, water, soap and towels should be available while handling the products. Additional details on product hazards, safety and emergency information for each product based on a review of product MSDS and manufacturer's recommendations are included in Appendix A.

The manufacturer recommendations for storage, handling and spill management should be followed for each product. In general, products included in this study should be stored in a dry, cool, and well ventilated location. Cleanup of spills for the products included in this study varies but can include vacuuming, sweeping/dry wiping, or soaking up/absorbing product. Do not flush with water or wet spilled products and wear proper PPE. Disposal of spilled product should be to a licensed landfill according to federal, state, and local regulations. Additional details on product storage procedures, spill

procedures, and waste considerations for each product based on review of product MSDS and manufacturer's recommendations are included in Appendix A.

CHAPTER 3: RESULTS

This section summarizes the results obtained from performing the product tests on the samples. Appendix G includes the detailed results and Appendix H includes the completed field worksheets that were used to record the raw data.

3.1 TEST PERFORMANCE SUMMARY

Table 3.1 summarizes the test results that achieved the target turbidity goal of 50 NTU for each sample. After Sample 4 was tested, the test results for each sample were reviewed and based on the results a shortened test list was identified.

Test	Test	Sample						
Test	Sample	1	2	3	4	5	6	7
1 (Control)	NA							
2	Yes							
3	Yes	Yes	Yes	No	No	Yes	Yes	No
4	Yes	No	No	No	No	-	-	-
5	Yes							
6	Yes	Yes	Yes	No	No	-	-	-
7	Yes	Yes	Yes	No	Yes	Yes	Yes	No
8	Yes	Yes	No	No	Yes	-	-	-
9	Yes	Yes	Yes	No	Yes	-	-	-
10	Yes	Yes	Yes	Yes	Yes	-	-	-
11	Yes	No	No	No	No	-	-	-
12	Yes	No	No	No	No	-	-	-
13	Yes	No	No	No	No	-	-	-

Table 3.1 Test Results that Achieved Target Turbidity Goal of 50 NTU.

NA, Not Applicable

Test not completed for that sample.

Due to the test results, Tests 4, 11, 12, 13 were not included in the shortened test list for the Tailgate Test Kit.

The test results for Test 6 were similar to Test 5, so Test 6 was not included in the shortened test list for use with the Tailgate Test Kit. If Test 5 meets the target turbidity goal, and the product is selected for full scale application, the Test 6 product combination may also be a potential option.

The test results for Tests 8, 9 and 10 were similar to Test 7, so Tests 8, 9, and 10 were not included in the shortened test list for use with the Tailgate Test Kit. If Test 7 meets the target turbidity goal, and the product is selected for full scale application, the Tests 8, 9, and 10 product combinations may also be a potential option.

3.2 RESULTS SUMMARY

The final treated sample was filtered through a coffee filter to measure the benefit of filtering. The results show that there is an additional reduction benefit due to filtering. Up to 82% removal was measured comparing the final unfiltered turbidity to the final filtered turbidity.

The initial pH was measured for each sample and the final pH was measured for each test. In general, only minor changes in pH (\leq ±1.0) were observed from the initial to final measurements for 10 of the product tests. Notable changes in pH (\geq ±1.0) were observed multiple times for Test 2 (Floc 06) and once for Test 6 (LB2101 (first) then Liquifloc 1% (second)).

For a couple of the samples, a final turbidity measurement was taken after all tests were completed to check how additional settling time affected the turbidity reduction. The results showed that additional reduction benefit was measured after additional settling time. This was specifically observed for Test 2 (Floc 06), Test 5 (Liquifloc 1%), Test 7 (Biostar-CH 2%).

3.3 VISUAL OBSERVATIONS

The following observations were made when performing the tests.

- For many of the tests, several doses were required before a reaction was noticed and/or measurable.
- After a reaction was noticed, the turbidity measured was dependent on the time allowed for settling of floc particles.
- The floc that formed varied for each product. The different products created either large floc, medium floc, or small floc.
- Significant amount of floating floc was observed multiple times with Test 2 (Floc 06). Based on conversations with the manufacturer, this is due to hydrocarbons, pigments, or dyes present in the sample. Filtration is recommended in removing floc particles in full scale applications that may be floating or suspended.
- The product for Test 4 (Earth Poly Stable Plus) would develop a thick/syrupy texture after product dosing.

CHAPTER 4: CONCLUSION AND RECOMMENDATIONS

4.1 CONCLUSION

The overall objectives of this study were met.

- A Tailgate Test Kit was developed for field testing flocculants for reducing turbidity in construction stormwater discharge. Essential items for the test are:
 - o A turbidity meter
 - Sample/test containers
 - Dose measurement tools
 - Field documentation worksheets (prepared as part of this study)
 - The products to be tested four selected products include Floc 06, SCI-CW-A0, Liquifloc 1%, and Biostar-CH 2%
 - Personal protective equipment (PPE)
- Test procedures and dosing guidance are provided.
- Scaling procedures were developed to convert the test result into the dosing rate for full-scale product application.
- Methods for testing residual/unreacted product were investigated. No preferred method was identified for use. There does not appear to be a simple/straightforward residual test that can be included in the Tailgate Test Kit and used to test all floc products, or product types.

4.2 RECOMMENDATIONS FOR NEXT STEPS

Two recommendations are presented for next steps with this study.

First, it is recommended that the product list for the Tailgate Test Kit be periodically updated as necessary. Given time limitations, only selected products were tested in this study for the Tailgate Test Kit. It is expected that other effective products may be available and/or developed in the future.

Second, it is recommended to further investigate methods for identifying residual/unreacted products.

REFERENCES

1. Dreschel, S. J. (2014). Flocculation Treatment BMPs for Construction Water Discharges. Minnesota Department of Transportation Research Services and Library, St Paul, MN.

 Wisconsin Department of Natural Resources, Bureaus of Water Quality and Watershed Management (2015). Water Quality Review Procedures For Additives. Guidance Number: 3400-2015-03, WisDOT, WI.

APPENDIX A

TASK 2: REVIEW PREVIOUS RESEARCH

Responsive partner. Exceptional outcomes.

To: Dwayne Stenlund and Dan Sullivan, Minnesota Department of Transportation

From: Kirby Templin and Jeff Strom, Wenck Associates, Inc.

Date: May 17, 2016

Subject: Task 2 – Review Previous Research

1. Introduction

The purpose of this technical memo is to identify the flocculants for use in the Tailgate Test Study, associated dosing guidance and mixing procedures, and to document the review of previous research on the use of flocculants to treat construction stormwater done by other state departments of transportation.

2. Select Flocculants for Use in Tailgate Test Study

The flocculants identified for potential use in the Tailgate Test Study are detailed in Table 1. The flocculants were identified based on input from the Minnesota Department of Transportation (MNDOT) and Technical Advisory Panel (TAP), review of Dreschel 2014, and review of other state Department of Transportation (DOTs). The flocculants identified for use in the Tailgate Test Study should provide results for a variety of soil types and adequately test and develop the "Tailgate Test" for testing flocculants on construction stormwater discharge in the field. It is recommended that additional flocculants, not listed above, be included or substituted into the tailgate test in the future as they are identified as preferred or effective flocculants for use with Minnesota soil types. Manufacturer's recommendations should be reviewed and followed for each flocculant for proper use, handling, storage and safety.

Product Name	Manufacturer
Earth Poly-Stable Plus	Earth and Road
FLOC 06	Innovative Turf Solutions
SCI CW-A0	Standard Contracting
Biostar-CH	Hild and Associates
APL Bridger Flocculant	Hild and Associates
APS 703d#3 Floc Log	Applied Polymer Systems, Inc.

Table 1. Products	Identified	for use in the	Tailgate Test Study.
-------------------	-------------------	----------------	----------------------

Dwayne Stenlund and Dan Sullivan

Minnesota Department of Transportation May 17, 2016

Product Name	Manufacturer
APS 706b Floc Log	Applied Polymer Systems, Inc.
LBP 2101 Coagulant	Dober
Liquifloc 1% Flocculant	Dober

3. Web Search

A web search was conducted to investigate how flocculants are used to treat construction stormwater in other states. The web search identified and included the following state environmental agencies and DOTs: Alabama, Georgia, Mississippi, New York, North Carolina, Oregon, Washington and Wisconsin. Table 2 provides a brief summary of the information available on each state's website. Additional information is available at the website links provided in Attachment A. In general, each state supports the use of approved flocculants as a potential BMP to treat stormwater runoff from construction sites. The review identified many potential flocculants for use, however, there was no definitive research or programs identified that would suggest the inclusion of flocculants identified by the web search in the Tailgate Test Study at this time. A table is included in Attachment B which lists the products approved for use by other DOTs that were identified through the web search. Most of the states include general language within their stormwater BMP manuals limiting the use of flocculants to certain applications and procedures. Most states review flocs on a case by case basis and some common themes for approved flocculants included:

- Cationic polymers are generally not supported due to toxicity concerns.
- Anionic polymer mixtures shall have less than or equal to 0.05% free acrylamide by weight as established by the FDA.
- Flocculants, especially polymers, shall not be directly applied to surface waters of the state.
- Flocculants should only be used when self-contained sediment control structures are in place downstream to settle the floc prior to discharge to surface waters.
- Applicators must provide Material Safety Data Sheets (MSDS) and toxicity information (supplied by the manufacturer) to the local permitting authority for approval prior to application in the field.
- Applicators should follow the manufacturer's recommended application rate and instructions.
- Flocculants shall be selected based on site-specific soil conditions through jar tests and/or other screening process.

A good example of guidance/procedures is Wisconsin DNR's Draft Technical Standard 1051 (Wisconsin DNR, 2015). Links to other state department websites with information on the use of flocculation are listed in the references section at the end of this memo.

State	Findings
Alabama	DOT has list of approved Temporary Erosion and Sediment Control Products. The product list includes 8 flocculants and approved manufacturers.
Georgia	Erosion and Sediment Control Manual identifies flocculants as a potential BMP within construction storm water ditches and storm drainages which feed into pre-constructed ponds or basins. The state does not have an approved list of products or manufacturers. Application shall comply with all federal and local rules and regulations and the operator is responsible for securing applicable permits.
Mississippi	Mississippi DEQ's Erosion and Sediment Control Manual identifies flocculants as a potential practice in conjunction with pumped construction site stormwater systems. The manual contains jar test guidelines to determine the most effective type of PAM for a given site. The state does not have an approved list of products or manufacturers.
New York	Very little information/guidance available online regarding flocculants as a potential stormwater treatment practice
North Carolina	North Carolina Erosion and Sediment Control Practice Standards and Specifications Guidelines approves the use of flocculants as a potential BMP after all physical BMPs have been implemented. Only products that pass the state's chronic toxicity testing requirements are allowed. North Carolina Division of Water Resources maintains a list of approved PAMS/Flocculants.
Oregon	BMP handbook mentions the use of flocculants as possible BMP in stormwater runoff. However, the state does not have a well-developed set of guidelines, standards, or list of approved products. The state has conducted a fair amount of research on the effectiveness and environmental impacts of Chitosan products.
Washington	State Construction Stormwater Pollution Prevention Guidelines contains criteria for chemical treatment product use and treatment system design considerations for flocculants. The Washington Department of Ecology maintains an approved list of existing technologies and manufacturers.
Wisconsin	Wisconsin DNR recently released procedures/guidance (currently in draft form) for using additives for stormwater sediment control (Wisconsin DNR, 2015). This document defines toxicity, application and product approval criteria for polymers and other flocculants. The state does not have an approved list of products or manufacturers.

Table 2. General findings from the DOT web search.

4. Dosage Guidance

The dosage guidance for the flocculants identified for use in the Tailgate Test Study are based on manufacturer's recommendations, unless noted otherwise, and are detailed in Table 3. Flocculant dosing should follow manufacturer's recommendations. Many of the flocculants identified can be obtained in a dry powder or liquid form, and in different concentrations. The flocculants received from the vendor are either a dry powder, a liquid solution ready for use in the study, or a high concentration formulation from which a reduced concentration solution needs to be created. The formulations obtained for use in the Tailgate Test Study were primarily a dry powder or liquid solution ready for test application. Although other formulations and concentrations are available for many of the products tested, the formulation used in the study was identified as the easiest formulation for use at a bench scale test level.

Dosage guidance is dependent on engineering factors which include but are not limited to flow rate and the flocculant solution concentration. The overall effectiveness of a flocculant is dependent on several environmental factors which include but are not limited to construction stormwater discharge turbidity, pH, and temperature. Based on the literature review of the products and discussions with manufacturers, there are no untreatable

turbidity limits, however thick sludge or mud consistencies are not treatable. In general, as turbidity increases, a higher dosage is required. Based on discussions with manufacturers, temperature appears to not inhibit a reaction as long as the stormwater is a liquid (not frozen). However, lower temperatures may cause the reaction time to slow down or require an increase in dosing for the reaction to occur. The ranges of environmental factors that influence effectiveness of the flocculants are detailed in Table 3.

Product Name	Tailgate Test Formulation	Dosage Guidance	Environmental Factors
Earth Poly-Stable Plus	Dry Powder	For soil stabilization, 20lbs per acre dry mix, or mix 1-lb per 100 gallons for hydro seeding application. (no guidance documentation identified)	 pH Range, Around Neutral Temperature Range, historically has not been an issue Shelf Life, 2 years
FLOC 06	Dry Powder	A 1-lb per 1,000 gallons construction stormwater discharge ratio is the dosage guidance (~120 mg per 1000 ml). For Tailgate test, add small quantity "pinch" if no reaction observed add more until desired results are achieved. (no guidance documentation identified)	pH Range, 4 to 12 Temperature Range, No Shelf Life, 2+ years
SCI CW-A0	Dry Powder	For Tailgate test, add small quantity using smidgen measurement (Start with half smidgen, if no reaction add the other half smidgen). Approximately 0.25g/1L. (no guidance documentation identified)	pH Range, historically has not been an issue Temperature Range, No Shelf Life, 8 to 16 months
Biostar-CH And APL Bridger Flocculant	Liquid Solution	For turbidity of 200 to 400 NTU dosage of 1 mg/L, 400 to 600 NTU dosage of 2 mg/L, 600 to 800 NTU dosage of 3 mg/L, 800+ NTU dosage of 4 mg/L (Based on a 2% Solution). (guidance tables and charts identified)	pH Range, 6 to 9 Temperature Range, Lower temperatures require a higher dosage Shelf Life, 12 to 24 months
APS 703d#3 Floc Log And APS 706b Floc Log	Floc Log	Single Product testing: Add about ½ of a pencil eraser sized piece of Floc Log sample to the sample water. Duplex Product testing Simultaneously: Add about ½ of a pencil eraser sized piece of two different Floc Log samples to the sample water. Duplex Product testing separately: Add about ½ of a pencil eraser sized piece of 703d#3 Floc Log sample to the sample water. Remove first Floc Log sample (703d#3) and add second Floc Log sample (706b). (guidance documents identified)	pH Range, above 3 Temperature Range, Reaction takes longer at lower temperatures (40 degrees or less) Shelf Life, Up to 5 Years
LBP 2101 Coagulant And Liquifloc 1% Flocculant	Liquid Solution	 Dosage guidance for two part mix with LB2101 and Liquifloc 1%. Dosage ratios for # of drops LBP 2101/Liquifloc 1% (1/1, 2/1, 2/2, 3/2, 3/3, etc). Try 1/1 first, if no reaction add next ratio in addition, continue until desired results. Liquifloc 1% can be used by itself. Slow mix method and add additional drops until desired results. (no guidance documents identified) 	pH Range, 6.5-8.5 Temperature Range, No Shelf Life, 2+ years

Table 3. Dosage Guidance Identified for Specific Flocculants.

4 A-4

5. Best Mixing Procedures

The mixing procedures for the flocculants identified for use in the Tailgate Test Study are based on manufacturer's recommendations, unless noted otherwise, and are detailed in Table 4. Flocculant application and mixing procedures should follow manufacturer's recommendations. The flocculants require different mixing procedures but in general are either rapid mixing or slow mixing. Rapid mixing can be achieved by shaking the sample by hand after application of the flocculant. Slow mixing can be achieved by stirring the sample slowly while the flocculant is applied.

The goal of the Tailgate Test kit is to quickly test several flocculants to identify effective flocculants that work for the project site. When transitioning to large scale application, it is important to deliver/apply the flocculant to the construction stormwater discharge in a manner that is similar to the mixing procedure used in the Tailgate Test to achieve similar results. Similarly, the mixing procedure used in the Tailgate Test should mimic the mixing procedure that is planned for large scale application. After the Tailgate Test, it is recommended that a larger scale test application is performed to measure the effectiveness of scaling the dosing rate and mixing procedure. Adjustments to the dosing rate and mixing procedure should be made as necessary to achieve desired results.

Product Name	Mixing Method	Mixing Procedures
Earth Poly-Stable Plus	Rapid Mixing	Product can be applied in dry powder form and mixed rapidly by hand shaking. Flocculation is expected to occur quickly, within 1 minute. For large scale application, can be applied as dry powder to surface or can be applied by hydroseeding method to surface.
FLOC 06	Rapid Mixing	Product can be applied in dry powder form and mixed rapidly by hand shaking. Flocculation is expected to occur almost instantly. For large scale application, can be applied by hand or spreader directly onto/into BMPs.
SCI CW-A0	Rapid Mixing	Product can be applied in dry powder form and mixed rapidly by hand shaking. Flocculation is expected to occur within 30-40 seconds. Bench level testing should imitate the mixing method/BMP used for large scale application.
Biostar-CH And APL Bridger Flocculant	Slow Mixing	Vigorously stir the drops into the solution (Do not shake). The reaction is instantaneous (less than 10 seconds). Allow 5 minutes for settling to occur. Settling and/or filtration is needed for removal of the floc which For large scale application settling in basin may take 12 to 24 hours. The Biostar-CH and APL Bridger Flocculant can be used both independently and in coordination with each other. Effective treatment depends on site specific conditions. Test both separately, also test Biostar-CH first then APL Bridger second, and lastly test APL Bridger first then Biostar-CH second.
APS 703d#3 Floc Log And APS 706b Floc Log	Slow Mixing	 Single Product testing: Moderately swirl the container to mix the sample with the product. The reaction should happen within 1 minute. Duplex Product testing Simultaneously: Moderately swirl the container to mix the sample with the product. The reaction should happen within 1 minute. Duplex Product testing separately: Moderately swirl the container after addition of the first 703d#3 Floc Log sample to mix the sample with the product until destabilization begins (record time). After removing 703d#3 and adding 706b moderately swirl until water is clear. The reaction should happen within 1 minute.

Table 4. Mixing Procedures Identified for Specific Flocculants.

ASSOCIATES

Minnesota Depar	ment of Transportation	
May 17, 2016		

Product Name	Mixing Method	Mixing Procedures	
LBP 2101 Coagulant	Rapid Mix LBP 2101	Mixing guidance for DPS (Dual Part System) mix with LB2101 and Liquifloc 1% Add LBP 2101 first (Rapid Mix) then add Liquifloc 1% second (Slow Mix). See	
And	And	dosage guidance for more mixing details.	
Liquifloc 1% Flocculant	Slow Mix Liquifloc 1%	Liquifloc 1% can be used by itself. Slow mix method and add additional drops until desired results.	

6. Best Management Practices

The flocculants presented in this memo can be used in a variety of ways for reducing total suspended solids (TSS) in construction stormwater discharge. Many of the products may be applied directly to disturbed bare soil to bind sediments and reduce erosion resulting in overall lower TSS in the construction stormwater. The products can also be applied directly to high TSS concentration construction stormwater through many delivery and application methods prior to discharging offsite.

There are several delivery and application methods that have been tested with success. The effectiveness of each delivery method is the result of the mixing associated with the delivery/application. It is important to test and mix the flocculants in the tailgate test similarly to the mixing that is anticipated during large scale delivery and application. Some of the delivery and application methods include: directly applying to the surface of a storage BMP (mixing mechanism may be required), direct injection to surface flow and/or pipe flow, and passive dosing with a floc filled bag installed instream, within a conveyance system or at a concentrated discharge point (inlet). See links in Attachment A to diagrams/pictures of dosing methods/examples.

Manufacturers offer their flocculant products in several formulations which allow for multiple delivery and application options. A summary of formulations available from the manufacturers of the flocculants used in this study is included in Table 5.

After effective flocculants are identified from the tailgate test for use in a large scale application, it is recommended that the manufacturer is contacted to discuss the site conditions, environmental factors, and project goals to get feedback and recommendations from the manufacturer.

Manufacturer	Formulations Available From Manufacturer
Earth and Road	The product is primarily available in liquid solution for application. The product can also be used in an open weave monofilament geotextile to be placed in an active flow.
Innovative Turf Solutions	The product is a dry powder. The product can also come in a sock and bag form for different application methods. There are 25-30 different blend options to target specific contaminants.
Standard Contracting	Product is only available in a dry powder form.

Manufacturer	Formulations Available From Manufacturer
Hild and Associates	Biostar CH Acetate Liquid solution available in concentrations of 1% and 2%. Biostar Bridger liquid available in 0.5% concentration. Biostar CH Lactate Flake is a solid form of the product that is available in a treatment bag application.
Applied Polymer Systems, Inc.	For water clarification, the floc log products are used. Other products for erosion control and other applications are available in powders or emulsions.
Dober	The Liquifloc and LB2101 DPS (Dual Part System) is available in a liquid form or solid/flake form. The liquid form is available in multiple concentrations.

7. Safety, Storage, Handling and Spill Management

Manufacturer recommendations for safety should be followed while using the products. Safety for all handling applications includes minimum level D Personal Protective Equipment (PPE) which includes: long pants, a shirt with sleeves, safety glasses, and closed toe work boots. Proper hygiene procedures should be followed such as washing hands after handling the chemicals. Do not eat, drink, smoke or apply cosmetics until hands are washed. Water, soap and towels should be available while handling chemicals. Do not ingest any of the products. Table 6 summarizes product hazards, safety and emergency information for each product based on review of manufacturer's recommendations.

Product Name	Physical State	Health Hazards	Physical Hazards	Recommended PPE and Practices	Emergency Procedures
Earth Poly- Stable Plus	Solid white powder	Eyes – Irritation Skin – Irritation Inhalation – Irritation Ingestion – Weakness, headache Toxicity – None expected. Ingestion of large amounts may cause serious health effects.	Slippery when wet. Slightly flammable.	Safety glasses, nitrile gloves, washing facilities.	If material contacts skin or eyes, flush with water. Seek medical attention if victim feels unwell after inhalation or ingestion.
FLOC 06	Solid/powder	Eyes – Irritation Skin – Irritation Inhalation – Contains silica, respiratory hazard – carcinogen Ingestion – Irritation Toxicity – None expected	None expected	Safety glasses, nitrile gloves, washing facilities. Avoid exposure to dust. Respiratory protection recommended if dust is generated.	If material contacts skin or eyes, flush with water. Seek medical attention if victim feels unwell after inhalation or ingestion.
SCI CW-A0	Solid/powder	Eyes – Irritation Skin – Irritation Inhalation – Contains silica, respiratory hazard – carcinogen. Ingestion – None expected Toxicity – None expected	Slippery when wet.	Safety glasses, nitrile gloves, washing facilities. Avoid exposure to dust. Respiratory protection recommended if	If material contacts skin or eyes, flush with water. Seek medical attention if victim feels unwell after inhalation or ingestion.

Table 6. Summary of Product Hazard, Safety, and Emergency Information.

Dwayne Stenlund and Dan Sullivan

Minnesota Department of Transportation May 17, 2016

Exceptional outcomes.

Recommended Product Physical Physical Emergency **Health Hazards** PPE and Name State Hazards Procedures Practices dust is generated. Eves – Irritation If material contacts Skin - None expected skin or eyes, flush Safety glasses, with water. Seek Inhalation - None nitrile gloves, None **Biostar-CH** Liquid expected medical attention if expected washing Ingestion - None victim feels unwell facilities. after inhalation or expected Toxicity - None expected ingestion. If material contacts **Eves** – Irritation skin or eyes, flush Skin - Irritation Safety glasses, with water. Seek APL Bridger Powder or nitrile gloves, Inhalation – Irritation None medical attention if Flocculant liquid Ingestion - Nausea, expected washing victim feels unwell facilities vomiting, diarrhea after inhalation or Toxicity - None expected ingestion. If material contacts Eyes – Irritation Skin - Irritation, drying skin or eyes, flush Safety glasses, Inhalation - None with water. Seek APS 703d#3 Blue semi None nitrile gloves, expected medical attention if Floc Log solid gel expected washing Ingestion - None victim feels unwell facilities. expected after inhalation or Toxicity - None expected ingestion. If material contacts **Eves** – Irritation Skin - Irritation, drying skin or eyes, flush Safety glasses, Inhalation - None with water. Seek APS 706b Blue semi None nitrile gloves, expected medical attention if Floc Log washing solid gel expected victim feels unwell Ingestion - None facilities. expected after inhalation or Toxicity - None expected ingestion. If material contacts **Eves** – Irritation skin or eyes, flush Safety glasses, Skin - Irritation with water. Seek LBP 2101 None nitrile gloves, Liquid Inhalation - Irritation medical attention if Coagulant expected washing victim feels unwell **Ingestion** – Irritation facilities. Toxicity - None expected after inhalation or ingestion. If material contacts Eyes – Irritation skin or eyes, flush Safety glasses, Skin - Irritation with water. Seek Liquifloc 1% None nitrile gloves, Liquid Inhalation - Irritation medical attention if washing Flocculant expected Ingestion – Irritation victim feels unwell facilities. Toxicity - None expected after inhalation or ingestion.

Manufacturer recommendations for storage, handling and spill management should be followed. Table 7 summarizes general product storage procedures, spill procedures, and waste considerations for each product based on review of manufacturers recommendations.

Product Name	Tailgate Test Formulation	Storage Guidance	Spill Procedures and Waste Considerations
Earth Poly-Stable Plus	Dry Powder	Store in a dry, cool and well ventilated location.	No special precautions required. Sweep up and scoop into suitable container for use or recycle. Do not flush with water, rather scoop or vacuum and then flush remaining traces with water. Spread the recovered contents on land, or, if contaminated dispose in a properly designated landfill.
FLOC 06	Dry Powder	Store in a dry, cool and well ventilated location.	Avoid breathing dust, wear respirator approved for silica dust. Vacuum up spilled material to avoid generating airborne dust. Avoid using water as product will become slippery when wetted. Dispose of waste in a licensed landfill according to federal, state and local regulations.
SCI CW-A0	Dry Powder	Store in a dry, cool and well ventilated location.	Avoid breathing dust, wear respirator approved for quartz, cristobalite and tridymite dust. Vacuum up spilled material to avoid generating airborne dust. Avoid using water as product will become slippery when wetted. Dispose of waste in a licensed landfill according to federal, state and local regulations.
Biostar-CH And APL Bridger Flocculant	Liquid Solution	Store between 50- 122 degrees F, solution will freeze at 26 degrees F (-3 C).	For spills, absorb with acid absorbent to recover the free product, then clean residue with soap and water. Landfill disposal of collected waste is acceptable as the compound is biodegradable. Dispose of waste in a licensed landfill according to federal, state and local regulations.
APS 703d#3 Floc Log And APS 706b Floc Log	Floc Log	Store in a dry, cool and well ventilated location.	Dry wipe spilled material as well as possible and place collected material in a suitable and closed container. Flush remaining traces with water. Dispose of waste in a licensed landfill according to federal, state and local regulations.
LBP 2101 Coagulant And Liquifloc 1% Flocculant	Liquid Solution	Store in the original container in a dry, cool and well- ventilated place. Keep container closed when not in use.	For spills, soak up materials with inert solids, such as clay or diatomaceous earth as soon as possible. Store away from other materials. Dispose of waste in a licensed landfill according to federal, state and local regulations.

Table 7. Summary of Product Storage, Handling and Spill Management Procedures.

8. References

Dreschel, S. J. (2014). Flocculation Treatment BMPs for Construction Water Discharges. Minnesota Department of Transportation Research Services and Library. St Paul, MN.

Wisconsin DNR (2015). Technical Standard 1051 (DRAFT). "Water Application of Additives for Sediment Control". <u>http://dnr.wi.gov/news/input/documents/guidance/TS1051Guidance.pdf</u>

Dwayne Stenlund and Dan Sullivan Minnesota Department of Transportation May 17, 2016

Attachment A

Website Links for Reference

Links to State Information

<u>Alabama:</u>

http://swcc.alabama.gov/pdf/Erosion%20Handbooks&Guides/Complete Field Guide.pdf

http://swcc.alabama.gov/pdf/Erosion%20Handbooks&Guides/2014%20Handbook%20Compl ete%20Volume/2014%20ESC%20Handbook%20Vol%201.pdf

http://www.dot.state.al.us/mtweb/Testing/MSDSAR/QMSD_index.htm

http://www.dot.state.al.us/mtweb/Testing/MSDSAR/doc/QMSD/Lii24.pdf

Georgia:

https://gaswcc.georgia.gov/sites/gaswcc.georgia.gov/files/Manual for Erosion and Sedime nt_Control_in_Georgia_Sixth_Edition_2014.pdf

Mississippi:

https://deq.state.ms.us/mdeq.nsf/page/NPS_PlanningandDesignManual2ndEd_Vol1?OpenD_ ocument

http://opcgis.deq.state.ms.us/Erosion Stormwater Manual 2ndEd/Volume1/Chap 4 Sections/4 6/V1 Chap4 6 Sediment Control FLC.pdf

North Carolina:

http://www.hendersoncountync.org/engineering/erosion/Manuals/Chapter 206 March 200 9.pdf

http://portal.ncdenr.org/c/document_library/get_file?uuid=3c3b8bb4-3f8b-406c-b4c7-4bdf3f7d91f1&groupId=38364

http://portal.ncdenr.org/c/document_library/get_file?uuid=bce262fc-256f-438e-9208-57bc3102929f&groupId=38364

Oregon:

http://www.deg.state.or.us/wg/stormwater/docs/nwr/flocculation.pdf

http://www.oregon.gov/ODOT/TD/TP_RES/docs/reports/assessingtheeffectandenvir.pdf

http://www.oregon.gov/ODOT/TD/TP_RES/research_notes/rsn06-07.pdf

Washington:

http://www.wsdot.wa.gov/research/reports/fullreports/490.1.pdf

http://www.ecy.wa.gov/programs/wq/stormwater/wwstormwatermanual/final bmp c250 1 2 06.pdf

http://www.ecy.wa.gov/programs/wq/stormwater/newtech/equivalent.html

Wisconsin:

http://wisconsindot.gov/Pages/doing-bus/eng-consultants/cnsltrsrces/environment/Stormwtr-mgmnt.aspx

http://dnr.wi.gov/news/input/documents/guidance/TS1051Guidance.pdf

http://wisconsindot.gov/Pages/doing-bus/eng-consultants/cnsltrsrces/tools/pal/default.aspx

Links to Diagrams/Pictures of Dosing Methods/Examples

Mississippi DEQ has diagram of sample pumped flocculation injection system and a picture showing example of PAM treated channel using inlet protection fabric on page 4-330 at the following link:

http://opcgis.deq.state.ms.us/Erosion Stormwater Manual 2ndEd/Volume1/Chap 4 Sections/4 6/V1 Chap4 6 Sediment Control FLC.pdf

The report at the following link contains several diagrams and examples of flocculation systems and water storage and settling tanks (see pages 32-37):

http://onlinepubs.trb.org/onlinepubs/nchrp/docs/NCHRP25-25(74) FR.pdf

The EPA handout document at the following link contains several examples of polymer flocculation BMPs (see pages 2-7):

http://www.siltstop.com/pictures/US%20EPA%20Polymer%20Flocculant%20Handout,%203 -14.pdf

The technical report document by the US DOT at the following link has several example schematics of chemical treatment/dosing systems (see pages 17-22):

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0ahUKEwjFxq v9gofMAhVI-

<u>2MKHdDIDGAQFggkMAI&url=http%3A%2F%2Fwww.ctiponline.org%2Fpublications%2Fview</u> <u>file.ashx%3FfileID%3D250&usg=AFQjCNFDxd9odONRe6yCv5JV7MYWCNVcZA</u>

Attachment B

Matrix of Other Department of Transportation Approved Flocculants

State	Manufacturer	Product Name	Notes
	Applied Polymer Systems	APS 700 Series	State Identification Code PEB# 1264
	Innovative Turf Solutions	EnviroPam (Granular)	State Identification Code PEB# 1232
Alabama	Innovative Turf Solutions	FLOC	State Identification Code PEB# 2907
	HaloSource, Inc.	HaloKlear/StormKlear DBP-2100 & Gel Floc (System)	State Identification Code PEB# 4018
		APS 712	Maximum Recommended Concentration: 59.3 ppm
		APS 730	Maximum Recommended Concentration: 5.6 ppm
		APS 740	Maximum Recommended Concentration: 5.2 ppm
	Applied Polymer System	APS 703d	
		APS 703d#3	
		APS 706b	
		APS 705	Maximum Recommended Concentration: 27.7 ppm
North Carolina	Aquamark, Inc	AQ100	Land surface application only at 39.7 ppm
		AQ109	Land surface application only at 0.180g/l
	Ashland Hercules	Ashland Charge Pac 55	Maximum Recommended Concentration: 10 mg/L
	Water Tech	Ashland Zalta MC 9500	Maximum Recommended Concentration: 10 mg/L
	Cape Fear	PAX-CFC39A	Maximum Recommended Concentration: 5 ppm
	Consulting	CFC-4330	Maximum Recommended Concentration: 4.5 ppm
	Carolina Hydrologics	HYDROLOC PAM	Land surface application only at 3.0 mg/l
	Chemical Solutions, Inc.	CS-1234 and/or CS- 1234D	Maximum Recommended Concentration: 500 mg/L per

State	Manufacturer	Product Name	Notes
			18% solids
		MK7154DP	Maximum Recommended Concentration: 10 mg/L
	Green Techniques	Soil Defender	Land surface application only at 0.008%
	HaloSource Inc.	GelFloc	Maximum Recommended Concentration: 2.56 mg/L
	HaloSource, Inc.	LBP-2101	Maximum Recommended Concentration: 500 mg/L
	Hanes Geo Components	TerraGuard Granular PAM	Maximum Recommended Concentration: 3.25mg/L
		EnviroPam	Maximum Recommended Concentration: 200 mg/L
	Innovative Turf Solutions	Erosion Guard Powder, Erosion Guard Logs/Erosion Guard Flats	Maximum Recommended Concentration: 200 mg/L
		FLOC	Maximum Recommended Concentration: 650 mg/L
	Leaner Meaner Greener, Inc	L.M.G. Dust Magnet 281 Solution	Maximum Recommended Concentration: 0.05%
		L.M.G. Dust Magnet 163 powder	Maximum Recommended Concentration: 0.5 mg/L
		DBP-2100	Maximum Recommended Concentration: 28.125 mg/L
	Nalco	Nalco 8187	Maximum Recommended Concentration: 100 ppm
	NTU	GeoScrub 10, 13, 20, 23, 34	Maximum Recommended Concentration: 10 mg/L
	NTO	GeoScrub Bubbles	Maximum Recommended Concentration: 1 mg/L
	Paschal Associates Sales	PFR P251	Maximum Recommended Concentration: 25 ppm
	Southeastern Laboratories	SEL FLOC 6026	Maximum Recommended Concentration: 7.5 ppm
	Storm Klear	3% Liqui-Floc	Maximum Recommended Concentration: 9.4 mg/L

State	Manufacturer	Product Name	Notes
	Terra Novo	EarthGuard	Maximum Recommended Concentration: .000625 mL/L
Washington	Pacific Inter- Mountain Distribution, LLC	EnviroTac II	Determined to be functionally equivalent to BMP C126 Polyacrylamide for Soil Erosion Protection and BMP C140 Dust Control.
	Innovative Turf Solutions	Floc	Determined to be functionally equivalent to Chitosan as a flocculent for use in BMP C250: Chemical Treatment
	Central Fiber Corp.	Hydroboost Tacpac GT	
	Profile Products	Con-Tack A/T	
	Eastern Products	Eco Tak-OP	
Wisconsin	Inc.	Eco Tak-SAT	
	HydroStraw	Fiber RX	
	Innovative Turf Solutions	Hydra Tac	
	Mat Inc.	Mat-ST-SS	

APPENDIX B

TASK 3: TAILGATE TEST KIT DESCRIPTION

Responsive partner. Exceptional outcomes.

To: Dwayne Stenlund and Bruce Holdhusen, Minnesota Department of Transportation

From: Kirby Templin and Louis Sigtermans, Wenck Associates, Inc.

Date: March 3, 2017

Subject: Task 3 – Tailgate Test Kit Description

The purpose of this technical memo is to summarize and describe the supplies that were used in the Tailgate Test Kit development for testing flocculants on construction stormwater discharge in the field. The supplies included in the Tailgate Test Kit study are detailed in Table 1, and shown in Photos 1 and 2. Items were selected based on portability, organization, and item durability for research and testing conditions. The list is intended as a guide to help identify what supplies to include and their intended purpose/use. Not all of the following items are necessary to put together a Tailgate Test Kit.

Organizational Category	Item Description	Purpose/Intended Use	Quantity
	45 gallon plastic tote	Storage of all test kit supplies	1
Storage	Plastic storage containers	Organization of PPE, office/misc., products, measurement tools	As needed
	5 gallon buckets with lids	Bulk sample storage, rinse water storage	As needed
	Safety Data Sheets (SDS)	Flocculant product information (handling, safety, spill management)	Each product
Denmanhatian	Field note worksheets	Recording results/notes	As needed
Documentation	Clipboard	Writing surface for worksheets	1
	3-ring binder with tab dividers	Contains SDS info, worksheets, etc.	1
	Permanent markers	Marking and labelling of samples, cuvettes, etc.	As needed
Office	Pens	Recording results/notes on worksheets	As needed
	Digital stopwatch/timers	Recording time between doses	2

Table 1. Supplies included in the Tailgate Test Study.

Dwayne Stenlund and Bruce Holdhusen Minnesota Department of Transportation March 3, 2017

Responsive partner. Exceptional outcomes.

Organizational Category	Item Description	Purpose/Intended Use	Quantity
	Paper towels	Cleaning aid	As needed
Cleaning	Coffee filters	Used to simulate filtering of flocculated stormwater discharge samples	As needed
Cleaning	Plastic trash bags	Trash collection for disposable pipettes, paper towels, filters, PPE, etc.	As needed
	Ziplock bags	As needed for soil sample collection	As needed
	N95 particulate filter respirators	Protection against powder flocculant inhalation hazard	As needed
Personal Protective Equipment (PPE)	Disposable nitrile gloves	Protection against flocculant/sample skin exposure	As needed
	Safety glasses	Protection against flocculant/sample eye exposure	Each analyst
	48 oz. clear wide mouth silo Nalgene bottles	Sample testing and mixing container, clear to allow for visual observation of floc, sufficiently tall to allow for settling	1 for each test/product
Sample Storage/Mixing	Plastic paint stir sticks	Sample stirring for slow mix methods	As needed
	Plastic funnels	Holds coffee filters used for filtering flocculated samples, and transferring stormwater discharge samples between containers	3
	Funnel rack	Holds filter funnels above 5 gallon bucket	1
Dosage Measurement	Measuring spoon sets: tad, dash, pinch, smidgen, drop	Dry power flocculant dosage measurement	2 sets
	1 mL disposable plastic pipettes	Sample transfer into cuvettes for turbidity readings; liquid flocculant dosage measurement	2 bags of 100
	pH and temperature meter	Sample pH and temperature measurement; follow manufacturer procedures	1
Meters and Related	Turbidity meter with 1,000+ NTU reading capability	Sample turbidity measurement; follow manufacturer procedures	1
Supplies	Standard calibration solutions	As needed for turbidity and pH meter calibration	As needed
	Distilled water	Turbidity blank for calibration and equipment rinsing	As needed

Dwayne Stenlund and Bruce Holdhusen Minnesota Department of Transportation March 3, 2017

Photo 1. Tailgate Test Equipment and Supplies

Photo 2. Tailgate Test Storage and Documentation Supplies

APPENDIX C COMPLETE STUDY TEST WORKSHEETS

Exceptional outcomes.

To: Dwayne Stenlund and Bruce Holdhusen, Minnesota Department of Transportation

- **From:** Kirby Templin and Louis Sigtermans, Wenck Associates, Inc.
- **Date:** March 3, 2017

Subject: Test Protocol and Worksheets (Complete Study Product List)

Individual worksheets were developed for each product that was tested as part of the development of the Tailgate Test Kit. The worksheets were revised based on user feedback during testing and data collection for development of the Tailgate Test Kit. This memo includes the worksheets developed for the initial 13 tests are included in Attachment A. Not all of the 13 tests were recommended for use in the Tailgate Test Kit due to test results and observations.

Dwayne Stenlund and Bruce Holdhusen Minnesota Department of Transportation March 3, 2017

Attachment A

Complete Study Test Worksheets

Complete Study

Test Worksheets

Responsive partner. Exceptional outcomes.

Field	Analyst(s):	
-------	-------------	--

Date: _____

Site:_____

Table 1 - Product Test List					
Test #	Test Completed	Product Name	Manufacturer	Formulation	
1		Control	-	-	
2		Floc 06	Innovative Turf Solutions	Dry Powder	
3		SCI-CW-A0	Standard Contracting	Dry Powder	
4		Earth Poly-Stable Plus	Earth and Road	Dry Powder	
5		Liquifloc 1%	Dober	Liquid Solution	
6		LB2101 (first) then Liquifloc 1% (second)	Dober	Liquid Solution	
7		Biostar-CH 2%	Hild and Associates	Liquid Solution	
8		APL Bridger	Hild and Associates	Liquid Solution	
9		Biostar-CH (first) then APL Bridger (second)	Hild and Associates	Liquid Solution	
10		APL Bridger (first) then Biostar-CH (second)	Hild and Associates	Liquid Solution	
11		APS 703d#3 Floc Log	Applied Polymer Systems, Inc.	Floc Log	
12		APS 706b Floc Log	Applied Polymer Systems, Inc.	Floc Log	
13		APS 703d#3 Floc Log and 706b Floc Log (simultaneously)	Applied Polymer Systems, Inc.	Floc Log	

Table 2 - Dry Product Measurement Conversions				
Measurement Spoon	Equivalent Measurement	Volume Equivalent (fl oz)	Volume Equivalent (mL)	
Drop	1/64 Teaspoon (1/2 Smidgen)	0.002604	0.07701	
Smidgen	1/32 Teaspoon (1/2 Pinch)	0.005208	0.1540	
Pinch	1/16 Teaspoon (1/2 Dash)	0.01042	0.3081	
Dash	1/8 Teaspoon (1/2 Tad)	0.02083	0.6161	
Tad	1/4 Teaspoon	0.04167	1.232	

Table 3 - Product Weight Conversions				
Product Name ¹	Measurement	Volume Equivalent (mL)	Weight Equivalent (g)	Density (g/mL)
Floc 06	1 drop (spoon)	0.07701	0.06887	0.8942
SCI-CW-A0	1 drop (spoon)	0.07701	0.06435	0.8355
Liquifloc 1%	1 drop (pipette ²)	0.0475	0.04773	1.0048
Biostar-CH 2%	1 drop (pipette ²)	0.0469	0.04592	0.9790

¹ Density information was not measured for all products

² Pipette referred to is the 1 mL disposable pipette used in the research field tests

Responsive partner. Exceptional outcomes.

	Field Analyst(s):
Date:	
Site:	
Product Tested: Control	

Mixing Method: No Mixing Method

Sample Parameters:

Reading	Time	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)
Initial					

Notes:

• The control is a reference that can be used to compare the results from the products that are tested.

• There are no products tested in the control.

Responsive partner. Exceptional outcomes.

	Indicate Field Analyst(s):
Date:	
Site:	
Product Tested: Floc 06 (Innovative Turf Solutions)	Rapid Test : Add large product dose to sample Significant Reaction Observed? Y
Test Volume:	Reduction goal achieved visually? Y N
Mixing Method: Rapid Mix (Shaking)	If yes, complete remainder of worksheet

Mixing/Dosing Guidance:

Add 1 Drop (Measurement Spoon) to sample bottle, close lid, and shake for 5 seconds. Let sit to react for remainder of 30

seconds. If reaction is noticed, wait remainder of 5 minutes to test the turbidity (Allows for settling). Repeat until desired

results. If results are not achieved within the first few "drops", increase the number of "drops" for each dose to 2+ until

desired results are achieved.

Sample Parameters:

Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial (Control)					
Final					

Dosing Table:

Starting Time (clock):

Time (min)	Dose Added (Spoon - Drop)	Cumulative Dosage (Spoon - Drop)	Pre-filter Turbidity (NTU)

Notes:

Responsive partner. Exceptional outcomes.

	Indicate Field Analyst(s):			
Date:				
Site:				
Product Tested: SCI-CW-A0 (Standard Contracting)	Rapid Test : Add large product dose to sample			
	Significant Reaction Observed? Y N			
Test Volume:	Reduction goal achieved visually? Y N			
Mixing Method: Rapid Mix (Shaking)	If yes, complete remainder of worksheet			

Mixing/Dosing Guidance:

Add 1 Drop (Measurement Spoon) to sample bottle, close lid, and shake for 5 seconds. Let sit to react for remainder of 30

seconds. If reaction is noticed, wait remainder of 5 minutes to test the turbidity (Allows for settling). Repeat until desired

results. If results are not achieved within the first few "drops", increase the number of "drops" for each dose to 2+ until

desired results are achieved.

Sample Parameters:

Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial (Control)					
Final					

Dosing Table:

Starting Time (clock): _____

Time (min)	Dose Added (Spoon - Drop)	Cumulative Dosage (Spoon - Drop)	Pre-filter Turbidity (NTU)

Notes:

Responsive partner. Exceptional outcomes.

	Indicate Field Analyst(s):
Date:	
Site:	
Product Tested: Earth Poly-Stable Plus (Earth and Road)	Rapid Test : Add large product dose to sample
	Significant Reaction Observed? Y N
Test Volume:	Reduction goal achieved visually? Y N
Mixing Method: Rapid Mix (Shaking)	If yes, complete remainder of worksheet

Mixing/Dosing Guidance:

Add 1 Drop (Measurement Spoon) to sample bottle, close lid, and shake for 5 seconds. Let sit to react for remainder of 30

seconds. If reaction is noticed, wait remainder of 5 minutes to test the turbidity (Allows for settling). Repeat until desired

results. If results are not achieved within the first few "drops", increase the number of "drops" for each dose to 2+ until

desired results are achieved.

Sample Parameters:

Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial (Control)					
Final					

Dosing Table:

Starting Time (clock):

Time (min)	Dose Added (Spoon - Drop)	Cumulative Dosage (Spoon - Drop)	Pre-filter Turbidity (NTU)

Notes:

Responsive partner. Exceptional outcomes.

	Indicate Field Analyst(s):	
Date:		
Site:		
Product Tested: Liquifloc 1% (Dober)	Rapid Test : Add large product dose to sample	
	Significant Reaction Observed? Y	Ν
Test Volume:	Reduction goal achieved visually? Y	Ν
Mixing Method: Slow Mix (Stirring)	If yes, complete remainder of worksheet	

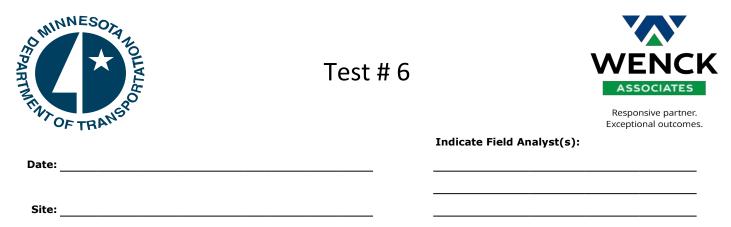
Mixing/Dosing Guidance:

Add 1 drop and stir for 5 seconds. Let sit to react for remainder of 1 minute. If no reaction is noticed, repeat. If reaction is

noticed, wait remainder of 5 minutes to test the turbidity (Allows for settling). Repeat until desired results. If results are not

achieved within the first few "drops", increase the number of "drops" for each dose to 2+ until desired results are achieved.

Sample Parameters:


Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial (Control)					
Final					

Dosing Table:

Starting Time (clock): _____

Time (min)	Dose Added (Drop)	Cumulative Dosage (Drop)	Pre-filter Turbidity (NTU)

Notes:

Product Tested: Dual Part System (DPS) LB2101 and Liquifloc 1% (Dober)

Test Volume:

Mixing Method: Rapid Mix - LB2101 (Shaking) Slow Mix - Liquifloc 1% (Stirring)

Rapid Test : Add large product dose to sample						
Significant Reaction Observed?	Y	Ν				
Reduction goal achieved visually?	Y	Ν				
If yes, complete remainder of worksheet						

Mixing/Dosing Guidance:

Start mixing ratio at step one which is to add 1 drop LB2101 and shake for 5 seconds and then add 1 drop Liquifloc 1% and

stir for 5 seconds. Let sit to react for remainder of 1 minute. If no reaction is noticed, perform next mixing step. If reaction is

noticed, wait remainder of 5 minutes to test turbidity (Allows for settling). Repeat for next mixing step until desired results.

Sample Parameters:

Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial (Control)					
Final					

Dosing Table:

Start Time (clock): _____

Time (min)	Step	Pre-filter Turbidity (NTU)

Step Table:

Step	LB2101 Added (Drops)	Liquifloc 1% Added (Drops)	Cumulative Dosage (Drops)
1	1	1	1 / 1
2	2	1	3 / 2
3	2	2	5 / 4
4	3	2	8 / 6
5	3	3	11 / 9
6	4	3	15 / 12
7	4	4	19 / 16
8	5	4	24 / 20

Cumulative Dosage: LB2101 / Liquifloc 1%

Notes:

Responsive partner. Exceptional outcomes.

	Indicate Field Analyst(s):
Date:	
Site:	
Product Tested: Biostar-CH 2% (Hild and Associates)	Rapid Test : Add large product dose to sample Significant Reaction Observed? Y N
Test Volume:	Reduction goal achieved visually? Y N
Mixing Method: Slow Mix (Stirring)	If yes, complete remainder of worksheet

Mixing/Dosing Guidance:

Add 1 drop and stir for 5 seconds. Let sit to react for remainder of 1 minute. If no reaction is noticed, repeat. If reaction is

noticed, wait remainder of 5 minutes to test the turbidity (Allows for settling). Repeat until desired results. If results are not

achieved within the first few "drops", increase the number of "drops" for each dose to 2+ until desired results are achieved.

Sample Parameters:

Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial (Control)					
Final					

Dosing Table:

Starting Time (clock):

Time (min)	Dose Added (Drop)	Cumulative Dosage (Drop)	Pre-filter Turbidity (NTU)

Notes:

Responsive partner. Exceptional outcomes.

	Indicate Field Analyst(s):		
Date:	·		
Site:			
Product Tested: APL Bridger (Hild and Associates)	Rapid Test : Add large product dose to	samp	le
	Significant Reaction Observed?	Y	N
Test Volume:	Reduction goal achieved visually?	Y	N
Mixing Method: Slow Mix (Stirring)	If yes, complete remainder of work	sheet	

Mixing/Dosing Guidance:

Add 1 drop and stir for 5 seconds. Let sit to react for remainder of 30 seconds. If no reaction is noticed, repeat. If reaction is

noticed, wait remainder of 5 minutes to test the turbidity (Allows for settling). Repeat until desired results. If results are not

achieved within the first few "drops", increase the number of "drops" for each dose to 2+ until desired results are achieved.

Sample Parameters:

Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial (Control)					
Final					

Dosing Table:

Starting Time (clock): _____

Time (min)	Dose Added (Drop)	Cumulative Dosage (Drop)	Pre-filter Turbidity (NTU)

Notes:

Responsive partner. Exceptional outcomes.

		Indicate Field Analyst(s):			
Date:					
Site:					
Product Tested	Biostar-CH (first) then APL Bridger (second)	Rapid Test : Add large product dose t	to samp	ble	
	(Hild and Associates)	Significant Reaction Observed?	Y	Ν	
Test Volume	:	Reduction goal achieved visually?	Y	Ν	
Mixing Method: Slow Mix (Stirring)		If yes, complete remainder of worksheet			

Mixing/Dosing Guidance:

Add 1 drop Biostar-CH and stir for 5 seconds. Let sit to react for remainder of 30 seconds. Add 1 drop APL Bridger and stir for

5 seconds. Let sit to react for remainder of 30 seconds. If no reaction is noticed, repeat. ONLY TAKE TURBIDITY READING IF

BOTH BIOSTAR-CH AND APL BRIDGER HAVE BEEN ADDED, AND IF THERE IS A REACTION. If reaction is noticed, wait

remainder of 5 minutes to test the turbidity (Allows floc to settle). Repeat until desired results. If results are not achieved

within the first few "drops", increase the number of "drops" for each dose to 2+ until desired results are achieved.

Sample Parameters:

Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial (Control)					
Final					

Dosing Table:

Starting Time (clock): _____

Time (min)	Product Code (A or B)	Dose Added (Drop)	Cumulative Dosage (Drop)	Pre-filter Turbidity (NTU)

Product Code: A = APL Bridger, B = Biostar-CH 2%

Notes:

Responsive partner. Exceptional outcomes.

	Indicate Field Analyst(s):		
Date:			
Site:			
Product Tested: <u>APL Bridger (first) then Biostar-CH (second)</u> (Hild and Associates)	Rapid Test : Add large product dose Significant Reaction Observed?	to samp	ple N
Test Volume:	Reduction goal achieved visually?	Ŷ	N
Mixing Method: Slow Mix (Stirring)	If yes, complete remainder of wor	rksheet	t
Mixing Method: <u>Slow Mix (Stirring)</u>	If yes, complete remainder of wor	rksheet	t

Add 1 drop APL Bridger and stir for 5 seconds. Let sit to react for remainder of 30 seconds. Add 1 drop Biostar-CH and stir for

5 seconds. Let sit to react for remainder of 30 seconds. If no reaction is noticed, repeat. ONLY TAKE TURBIDITY READING IF

BOTH BIOSTAR-CH AND APL BRIDGER HAVE BEEN ADDED, AND IF THERE IS A REACTION. If reaction is noticed, wait

remainder of 5 minutes to test the turbidity (Allows floc to settle). Repeat until desired results. If results are not achieved

within the first few "drops", increase the number of "drops" for each dose to 2+ until desired results are achieved.

Sample Parameters:

Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial (Control)					
Final					

Dosing Table:

Start Time (clock):

Time (min)	Product Code (A or B)	Dose Added (Drop)	Cumulative Dosage (Drop)	Pre-filter Turbidity (NTU)

Product Code: A = APL Bridger, B = Biostar-CH 2%

Notes:

Responsive partner. Exceptional outcomes.

Indicate Field Analyst(s):

Date:

Site: _____

Product Tested: APS 703d#3 Floc Log (Applied Polymer Systems, Inc.)

Test Volume: _____

Mixing Method: Slow Mix (Stirring)

Mixing/Dosing Guidance:

Add 1/2 pencil eraser-sized piece that fits in a drop size measurement spoon. Stir for 1 minute and let sit for remainder of 5

minutes. Test turbidity at the 5- and 10-minute times. Stir for 30 seconds after 10-minute time. Test turbidity at the 15- and

20-minute times. Stir for 30 seconds after 20-minute time. Test turbidity at the 25- and 30-minute times. Repeat as necessary.

Sample Parameters:

Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial (Control)					
Final					

Dosing Table:

Starting Time (clock):

Time (min)	Pre-filter Turbidity (NTU)
5	
10	
Sti	r for 30 seconds
15	
20	
Sti	r for 30 seconds
25	
30	

Notes:

Responsive partner. Exceptional outcomes.

Indicate Field Analyst(s):

Date:

Site:

Product Tested: APS 706b Floc Log (Applied Polymer Systems, Inc.)

Test Volume: ______

Mixing Method: Slow Mix (Stirring)

Mixing/Dosing Guidance:

Add 1/2 pencil eraser-sized piece that fits in a drop size measurement spoon. Stir for 1 minute and let sit for remainder of 5

minutes. Test turbidity at the 5- and 10-minute times. Stir for 30 seconds after 10-minute time. Test turbidity at the 15- and

20-minute times. Stir for 30 seconds after 20-minute time. Test turbidity at the 25- and 30-minute times. Repeat as necessary.

Sample Parameters:

Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial (Control)					
Final					

Dosing Table:

Starting Time (clock): _____

Time (min)	Pre-filter Turbidity (NTU)		
5			
10			
Sti	r for 30 seconds		
15			
20			
Stir for 30 seconds			
25			
30			

Notes:

Responsive partner. Exceptional outcomes.

-		Indicate Field Analyst(s):
Date:		
Site:		
Product Tested:	APS 703d#3 and APS 706b Floc Log (simultaneously)	
	(Applied Polymer Systems, Inc.)	
Test Volume:		_
Mixing Method:	Slow Mix (Stirring)	
Mixing/Dosing Guida	nce:	

Add 1/2 pencil eraser-sized piece that fits in a drop size measurement spoon. Stir for 1 minute and let sit for remainder of 5

minutes. Test turbidity at the 5- and 10-minute times. Stir for 30 seconds after 10-minute time. Test turbidity at the 15- and

20-minute times. Stir for 30 seconds after 20-minute time. Test turbidity at the 25- and 30-minute times. Repeat as necessary.

Sample Parameters:

Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial (Control)					
Final					

Dosing Table:

Starting Time (clock):

Time (min)	Pre-filter Turbidity (NTU)
5	
10	
Sti	r for 30 seconds
15	
20	
Sti	r for 30 seconds
25	
30	

Notes:

APPENDIX D

TASK 4: TAILGATE TEST KIT WORKSHEETS

To: Dwayne Stenlund and Bruce Holdhusen, Minnesota Department of Transportation

- **From:** Kirby Templin and Louis Sigtermans, Wenck Associates, Inc.
- **Date:** March 3, 2017

Subject: Task 4 – Tailgate Test Kit Worksheets

Individual worksheets were developed for each product that was tested as part of the development of the Tailgate Test Kit. The worksheets were revised based on user feedback during testing and data collection for development of the Tailgate Test Kit. Based on the study results and observations, a shortened list of product worksheets was identified for use with the Tailgate Test Kit. The worksheets for use with the Tailgate Test Kit are included in Attachment A.

Dwayne Stenlund and Bruce Holdhusen Minnesota Department of Transportation March 3, 2017

Attachment A

Tailgate Test Kit Worksheets

Tailgate Test Kit

Test Worksheets

Responsive partner. Exceptional outcomes.

Field	Analyst(s):
-------	-------------

Date:	
Site:	

	Table 1 - Product Test List							
Test #	est # Test Completed Product Name Manufacturer Formulation							
1		Control	-	-				
2		Floc 06	Innovative Turf Solutions	Dry Powder				
3		SCI-CW-A0	Standard Contracting	Dry Powder				
5		Liquifloc 1%	Dober	Liquid Solution				
7		Biostar-CH 2%	Hild and Associates	Liquid Solution				

Table 2 - Dry Product Measurement Conversions						
Measurement Spoon	Equivalent Measurement	Volume Equivalent (fl oz)	Volume Equivalent (mL)			
Drop	1/64 Teaspoon (1/2 Smidgen)	0.002604	0.07701			
Smidgen	1/32 Teaspoon (1/2 Pinch)	0.005208	0.1540			
Pinch	1/16 Teaspoon (1/2 Dash)	0.01042	0.3081			
Dash	1/8 Teaspoon (1/2 Tad)	0.02083	0.6161			
Tad	1/4 Teaspoon	0.04167	1.232			

	Table 3 - Product Weight Conversions						
Product Name Measurement Volume Equivalent (mL) Weight Equivalent (g) Density (g/m							
Floc 06	1 drop (spoon)	0.07701	0.06887	0.8942			
SCI-CW-A0	1 drop (spoon)	0.07701	0.06435	0.8355			
Liquifloc 1%	1 drop (pipette ¹)	0.0475	0.04773	1.0048			
Biostar-CH 2%	1 drop (pipette ¹)	0.0469	0.04592	0.9790			

 $^{1}\ensuremath{\mathsf{Pipette}}$ referred to is the 1 mL disposable pipette used in the research field tests

Responsive partner. Exceptional outcomes.

	Field Analyst(s):
Date:	
Site:	
Product Tested: Control	

Mixing Method: No Mixing Method

Sample Parameters:

Reading	Time	Temp (°C)	pН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)
Initial					

Notes:

• The control is a reference that can be used to compare the results from the products that are tested.

• There are no products tested in the control.

Responsive partner. Exceptional outcomes.

	Indicate Field Analyst(s):	
Date:		
Site:		
Product Tested: Floc 06 (Innovative Turf Solutions)	Rapid Test : Add large product dose to sample Significant Reaction Observed? Y N	
Test Volume:	Reduction goal achieved visually? Y N	
Mixing Method: Rapid Mix (Shaking)		

Mixing/Dosing Guidance:

Add 1 Drop (Measurement Spoon) to sample bottle, close lid, and shake for 5 seconds. Let sit to react for remainder of 30

seconds. If reaction is noticed, wait remainder of 5 minutes to test the turbidity (Allows for settling). Repeat until desired

results. If results are not achieved within the first few "drops", increase the number of "drops" for each dose to 2+ until

desired results are achieved.

Sample Parameters:

Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial (Control)					
Final					

Dosing Table:

Starting Time (clock):

Time (min)	Dose Added (Spoon - Drop)	Cumulative Dosage (Spoon - Drop)	Pre-filter Turbidity (NTU)

Notes:

Responsive partner. Exceptional outcomes.

	Indicate Field Analyst(s):
Date:	
Site:	
Product Tested: SCI-CW-A0 (Standard Contracting)	Rapid Test : Add large product dose to sample Significant Reaction Observed? Y
Test Volume:	Reduction goal achieved visually? Y N
Mixing Method: Rapid Mix (Shaking)	If yes, complete remainder of worksheet

Mixing/Dosing Guidance:

Add 1 Drop (Measurement Spoon) to sample bottle, close lid, and shake for 5 seconds. Let sit to react for remainder of 30

seconds. If reaction is noticed, wait remainder of 5 minutes to test the turbidity (Allows for settling). Repeat until desired

results. If results are not achieved within the first few "drops", increase the number of "drops" for each dose to 2+ until

desired results are achieved.

Sample Parameters:

Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial (Control)					
Final					

Dosing Table:

Starting Time (clock): _____

Time (min)	Dose Added (Spoon - Drop)	Cumulative Dosage (Spoon - Drop)	Pre-filter Turbidity (NTU)

Notes:

Responsive partner. Exceptional outcomes.

	Indicate Field Analyst(s):	
Date:		
Site:		
Product Tested: Liquifloc 1% (Dober)	Rapid Test : Add large product dose to sample	
	Significant Reaction Observed? Y	Ν
Test Volume:	Reduction goal achieved visually? Y	Ν
Mixing Method: Slow Mix (Stirring)	If yes, complete remainder of worksheet	

Mixing/Dosing Guidance:

Add 1 drop and stir for 5 seconds. Let sit to react for remainder of 1 minute. If no reaction is noticed, repeat. If reaction is

noticed, wait remainder of 5 minutes to test the turbidity (Allows for settling). Repeat until desired results. If results are not

achieved within the first few "drops", increase the number of "drops" for each dose to 2+ until desired results are achieved.

Sample Parameters:

Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial (Control)					
Final					

Dosing Table:

Starting Time (clock): _____

Time (min)	Dose Added (Drop)	Cumulative Dosage (Drop)	Pre-filter Turbidity (NTU)

Notes:

Responsive partner. Exceptional outcomes.

	Indicate Field Analyst(s):			
Date:				
Site:				
Product Tested: Biostar-CH 2% (Hild and Associates)	Rapid Test : Add large product dose to sample Significant Reaction Observed? Y			
Test Volume:	Reduction goal achieved visually? Y N			
Mixing Method: Slow Mix (Stirring)	If yes, complete remainder of worksheet			

Mixing/Dosing Guidance:

Add 1 drop and stir for 5 seconds. Let sit to react for remainder of 1 minute. If no reaction is noticed, repeat. If reaction is

noticed, wait remainder of 5 minutes to test the turbidity (Allows for settling). Repeat until desired results. If results are not

achieved within the first few "drops", increase the number of "drops" for each dose to 2+ until desired results are achieved.

Sample Parameters:

Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial (Control)					
Final					

Dosing Table:

Starting Time (clock): _____

Time (min)	Dose Added (Drop)	Cumulative Dosage (Drop)	Pre-filter Turbidity (NTU)

Notes:

APPENDIX E

TASK 5: PROCEDURES TO SCALE TEST KIT RESULTS

Responsive partner. Exceptional outcomes.

To: Dwayne Stenlund and Bruce Holdhusen, Minnesota Department of Transportation

- From: Kirby Templin and Jeff Strom, Wenck Associates, Inc.
- **Date:** March 3, 2017

Subject: Procedure to Scale Tailgate Test Kit Results

This memo summarizes the procedure to scale product test results to full scale product application. The procedure includes 7 steps necessary to obtain the total product required to treat the total water volume, identify the product dose rate to treat the construction stormwater discharge rate, and to monitor/adjust as necessary to achieve target reduction goal. An example scenario is provided in Attachment A.

<u>Step 1</u>:

▲ Determine/estimate the total volume of water to be treated (cubic feet (cf), or gallons (gal)).

<u>Step 2</u>:

▲ Identify the construction stormwater discharge rate that is going to be treated (cubic feet per second (cfs), or gallons per minute (gpm)).

<u>Step 3</u>:

▲ Select the product to scale. This was identified through performing the product test worksheets on the sample.

<u>Step 4</u>:

▲ Identify the effective product dose needed to treat 1 liter of sample volume. The product dose is the cumulative dose that was needed to achieve the target turbidity on the product test worksheet. This is likely a measurement in "drops". Convert sample volume to units of Step 1. One liter is 0.264172 gallons, or 0.0353147 cubic feet.

<u>Step 5</u>:

Calculation 1 – Estimate total product needed to treat the total volume to turbidity goal. Watch units when performing calculation. Convert calculation result units as needed. Obtain product weight conversion information from the product manufacturer or the product conversion tables from the Tailgate Test Kit Worksheets.

 $Calculation 1 = \frac{Step \ 1 \times Step \ 4 \ Effective \ Dose \times Product \ Weight \ Per \ Dose \ Step \ 4 \ Sample \ Volume}{Step \ 4 \ Sample \ Volume}$

Wenck Associates, Inc.7500 Olson Memorial HighwaySuite 300Golden Valley, MN55427Toll Free 800-472-2232Main 763-252-6800 F- Email wenckmp@wenck.comWeb wenck.com

<u>Step 6</u>:

Calculation 2 – Estimate the product dose rate to treat the construction stormwater discharge rate from Step 2. Watch units when performing calculation. Convert calculation result units as needed.

 $Calculation \ 2 = \frac{Calculation \ 1 \times Step \ 2}{Step \ 1}$

<u>Step 7</u>:

▲ Monitor reduction results during full scale product application. Adjust dose rate as necessary to achieve target turbidity goal.

Useful Conversions

- ▲ 1 cubic foot = 7.48052 gallons
- ▲ 1 cubic foot = 28.3168 Liters
- ▲ 1 gallon = 3.78541 Liters
- ▲ 1 pound = 453.592 grams

Attachment A

Example Scenario

Example Scenario

Example Tailgate Test with the following site conditions:

- ▲ Effluent Turbidity = 1,000 NTU
- ▲ Turbidity Goal for Site = 50 NTU
- ▲ Volume of Water to be Treated = 25,000 gallons
- ▲ Stormwater Discharge Flow Rate = 100 gpm
- ▲ Test Sample Volume = 1 Liter
- Product Weight = 0.065 grams per drop

<u>Step 1</u>:

▲ 25,000 gallons

<u>Step 2</u>:

▲ 100 gpm

<u>Step 3</u>:

Example Product A

Step 4:

▲ Dose is 4 drops to treat 1 Liter to target turbidity goal of 50 NTU (See Figure 1). One liter is 0.264172 gallons

Step 5:

$$Calculation 1 = \frac{25,000 \text{ gal} \times 4 \text{ drops} \times 0.065 \text{ grams per drop}}{0.264172 \text{ gal}} = 24,605 \text{ grams} = 54.25 \text{ lbs}$$

▲ The total product needed is approximately 55 lbs.

<u>Step 6</u>:

$$Calculation \ 2 = \frac{54.25 \ lbs \times 100 \ gpm}{25,000 \ gal} = 0.22 \ lbs \ per \ min = 98 \ grams \ per \ min$$

▲ The product dose rate to treat 100 gpm is 0.22 lbs per minute.

<u>Step 7</u>:

The reduction results were monitored and no adjustment to the product dose rate was necessary to meet the target turbidity goal.

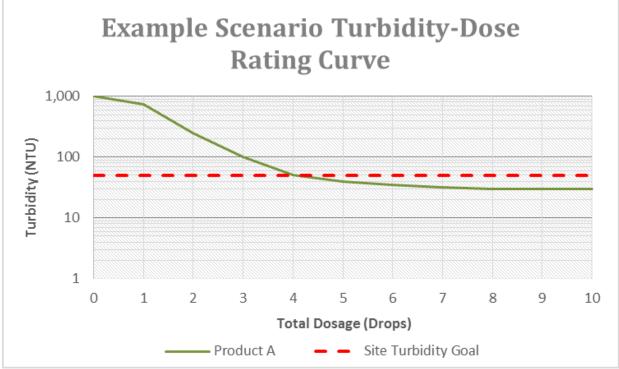


Figure 1. Example Turbidity-Dose Rating Curve

APPENDIX F

TASK 5: PROCEDURES TO TEST NEW PRODUCTS

- To: Dwayne Stenlund and Bruce Holdhusen, Minnesota Department of Transportation
- From: Kirby Templin and Jeff Strom, Wenck Associates, Inc.
- **Date:** March 3, 2017

Subject: Procedure to Test New Products and Develop a Worksheet

This memo summarizes the procedure for testing a new product and developing a test worksheet for use with the Tailgate Test Kit. The procedure is described through the following steps.

<u>Step 1</u>:

- ▲ Contact manufacturer to obtain a sample of the product. Often times manufacturers will provide a sample of their product free of charge for testing purposes.
- ▲ Obtain available product information from the manufacturer. Product information includes:
 - Material Safety Data Sheet (MSDS)
 - Mixing Guidelines
 - Dosing Guidelines
 - Other General Product Information Documents

<u>Step 2</u>:

- ▲ Test the product on 3-5 construction stormwater discharge samples. Collect a sufficient amount of sample in case multiple tests are needed. Ideally, samples should be collected at different sites to demonstrate varying levels of turbidity, soil conditions, water chemistry, and other geologic/geographic conditions.
- ▲ If construction stormwater discharge samples cannot be collected, synthetic samples may be created by collecting soil samples and mixing them with water representative of the project site (preferred), or distilled water. Construction stormwater discharge samples are preferred because the samples are representative of real conditions.

<u>Step 3</u>:

- ▲ Review manufacturer mixing and dosing guidelines.
- ▲ Begin test of new product following manufacturer mixing and dosing guidelines.
- ▲ Depending on product and manufacturer recommendations, typically, first a product dose is added to the sample, the sample is mixed, and then the sample is observed for a reaction. Based on previous test development, mixing phases were identified as 5-10 seconds, and observation phases were the remainder of 30-60 seconds.
- ▲ If a reaction is noticed, a turbidity measurement should be collected for developing dose-turbidity curves. Based on previous test development, a turbidity measurement after 5 minutes (from dose time) provided good estimates. Turbidity will decrease as the allowed settling time is increased, but this directly impacts the length of the test.
- Repeat the dose, mixing, observation, and turbidity measurement as needed to achieve the turbidity goal.

- ▲ Repeat Step 3 as needed to develop the dosing and mixing recommendations.
- ▲ Take notes and observations that can be used to develop the worksheet that includes the recommended mixing and dosing guidelines.

<u>Step 4</u>:

- ▲ After testing 3-5 samples, review the results and make a determination if a worksheet should be developed for the product and included in the Tailgate Test Kit.
- ▲ The worksheet should include the mixing and dosing guidelines, and a table for data collection. Review other product worksheets for guidance.

<u>Step 5</u>:

- ▲ It is important to identify the product weight conversions that are helpful with scaling test results to full scale application.
 - Determine the measurement (1 drop (spoon) or 1 drop (pipette)) volume equivalent in mL.
 - Determine the weight equivalent (g) for the measurement.
 - Calculate the density (g/mL)

APPENDIX G RESULTS

Responsive partner. Exceptional outcomes.

To: Dwayne Stenlund and Bruce Holdhusen, Minnesota Department of Transportation

From: Kirby Templin, Wenck Associates, Inc.

Date: March 3, 2017

Subject: Results Memorandum

1. Introduction

This memo summarizes the results collected while performing the product tests for the Tailgate Test Study. Worksheets were developed for thirteen tests to provide guidance for testing the products/product combinations. The thirteen tests that were performed include:

- ▲ Test 1 Control (No Products Tested)
- Test 2 Floc 06
- ▲ Test 3 SCI-CW-A0
- ▲ Test 4 Earth Poly-Stable Plus
- ▲ Test 5 Liquifloc 1%
- ▲ Test 6 LB2101 (first) then Liquifloc 1% (second)
- ▲ Test 7 Biostar-CH 2%
- ▲ Test 8 APL Bridger
- ▲ Test 9 Biostar-CH 2% (first) then APL Bridger (second)
- ▲ Test 10 APL Bridger (first) then Biostar-CH 2% (second)
- ▲ Test 11 APS 703d#3 Floc Log
- ▲ Test 12 APS 706b Floc Log
- ▲ Test 13 APS 703d#3 Floc Log and APS 706b Floc Log (Simultaneously)

Eight samples were collected, three were synthetic samples and five were construction stormwater discharge samples. The eight samples collected include:

- ▲ Test Sample Synthetic Sample
- ▲ Sample 1 Discharge Sample
- ▲ Sample 2 Discharge Sample
- ▲ Sample 3 Discharge Sample
- ▲ Sample 4 Synthetic Sample
- ▲ Sample 5 Grab Sample
- ▲ Sample 6 Grab Sample
- ▲ Sample 7 Synthetic Sample

For this study, the target turbidity goal was 50 NTU.

2. Sample Results Summary

Tables 1 through 9 summarize results that were obtained while performing the 13 tests on the eight samples. The following information is included in the tables.

Test – The test that was completed that the results correspond to.

Significant Reaction – General observation to indicate if the product was causing a noticeable reaction and turbidity reduction.

Turbidity Goal <50 NTU – Did the test meet the study target turbidity goal of 50 NTU.

Total Dose for Test – This is the total product dose that was added during the test. This is not necessarily the dose that was required to achieve the target turbidity goal.

Initial pH – The initial pH of the sample. The initial pH is from Test 1, the control test, except for the Test Sample which was tested over multiple days.

Final pH – After product was added and the test was complete, the final pH was measured.

Initial NTU - The initial turbidity measurement of the sample. The initial NTU is the turbidity measurement from Test 1, the control test, except for the Test Sample which was tested over multiple days.

Final NTU (Unfiltered) - After product was added and the test was complete, the final turbidity was measured.

Final NTU (Filtered) - After product was added and the test was complete, the sample was filtered through a coffee filter and then the turbidity was measured.

NTU Measurement after all Tests Completed – After all tests were completed for the sample, the turbidity was re-measured for each test. This measurement accounts for additional time for floc particles to settle.

Percent Reduction (Initial to Final Unfiltered) – The percent reduction that was calculated from initial turbidity measured to the final unfiltered turbidity measurement.

Filtration Percent Reduction (Final Unfiltered to Final Filtered) – The percent reduction that was calculated from the measured final turbidity unfiltered to the final turbidity filtered measurement.

2.1. Test Sample Results

A summary of the results for each test performed on the Test Sample are provided in Table 1.

Results

Significant reactions were observed for the 12 product tests, and all 12 product tests performed met the turbidity goal of 50 NTU.

Between 13% to 53% reduction was measured from filtering the final tested samples. However, since all 12 product tests (minus control) met the turbidity goal, the filtering did not result in additional tests meeting the turbidity goal.

The initial pH for Sample 4 was 7.69. Only minor changes in pH (<1.0) were observed from the initial to final measurements for the tests.

Table 1. Test Sample Results

Test	Significant Reaction	Turbidity Goal <50 NTU	Total Dose for Test ¹	Initial pH	Final pH	Initial NTU	Final NTU (Unfiltered)	Final NTU (Filtered)	NTU Measurement After All Tests Completed	Percent Reduction (Initial to Final Unfiltered)	Filtration Percent Reduction (Final Unfiltered to Final Filtered)
1 (control)	-	-	-	7.69	7.69	>1000	>1000	>1000	-	0%	0%
2	Yes	Yes	2 Drops	7.69	7.02	>1000	0.540	0.828	-	100%	-53%
3	Yes	Yes	2 Drops	7.69	7.68	>1000	10.86	7.321	-	99%	33%
4	Yes	Yes	35 Drops	7.69	-	>1000	64.18	32.96	-	94%	49%
5	Yes	Yes	10 Drops	7.69	7.27	>1000	31.28	19.51	-	97%	38%
6	Yes	Yes	4 Drops	7.69	7.15	>1000	8.758	7.621	-	99%	13%
7	Yes	Yes	6 Drops	7.23	-	>1000	31.59	20.29	-	97%	36%
8	Yes	Yes	6 Drops	7.23	7.93	>1000	65.68	32.90	-	93%	50%
9	Yes	Yes	6 Drops	7.23	7.62	>1000	43.49	24.29	-	96%	44%
10	Yes	Yes	6 Drops	7.23	7.57	>1000	48.14	22.46	-	95%	53%
11	Yes	Yes	20 min	7.40	7.40	>1000	23.15	16.63	-	98%	28%
12	Yes	Yes	15 min	7.40	7.79	>1000	15.30	11.45	-	98%	25%
13	Yes	Yes	15 min	7.40	7.62	>1000	30.82	23.26	-	97%	25%

- No Data available

2.2. Sample 1 Results

A summary of the results for each test performed on Sample 1 are provided in Table 2.

Results

Eleven of the product tests observed significant reactions, but only seven of the product tests performed met the turbidity goal of 50 NTU. The tests that met the turbidity goal include:

- ▲ Test 2 Floc 06
- ▲ Test 3 SCI-CW-A0
- ▲ Test 5 Liquifloc 1%
- ▲ Test 6 LB2101 (first) then Liquifloc 1% (second)
- ▲ Test 7 Biostar-CH 2%
- ▲ Test 8 APL Bridger
- ▲ Test 9 Biostar-CH 2% (first) then APL Bridger (second)
- ▲ Test 10 APL Bridger (first) then Biostar-CH 2% (second)

Between 11% to 82% reduction was measured from filtering the final tested samples. Filtering did result in an additional test meeting the turbidity goal. The test that met the goal due to filtering was:

▲ Test 8 – APL Bridger

The initial pH for Sample 1 was 7.46. Only minor changes in pH (<1.0) were observed from the initial to final measurements for 11 of the product tests. Test 2 was the only test where the pH varies significantly between initial and final (final pH of 5.69).

Dwayne Stenlund and Bruce Holdhusen Minnesota Department of Transportation March 3, 2017

Exceptional outcomes.

Table 2. Sample 1 Results

Test	Significant Reaction	Turbidity Goal <50 NTU	Total Dose for Test ¹	Initial pH	Final pH	Initial NTU	Final NTU (Unfiltered)	Final NTU (Filtered)	NTU Measurement After All Tests Completed	Percent Reduction (Initial to Final Unfiltered)	Filtration Percent Reduction (Final Unfiltered to Final Filtered)
1 (control)	-	-	-	7.46	7.46	>1000	>1000	>1000	-	0%	0%
2	Yes	Yes	5 Drops	7.46	5.69	>1000	19.57	3.463	-	98%	82%
3	Yes	Yes	7 Drops	7.46	7.28	>1000	28.95	20.32	-	97%	30%
4	No	No	37 Drops	7.46	7.11	>1000	97.63	74.51	-	90%	24%
5	Yes	Yes	10 Drops	7.46	7.26	>1000	22.34	12.28	-	98%	45%
6	Yes	Yes	20 Drops	7.46	7.07	>1000	33.90	24.11	-	97%	29%
7	Yes	Yes	8 Drops	7.46	7.25	>1000	21.69	14.38	-	98%	34%
8	Yes	No	8 Drops	7.46	7.38	>1000	58.92	41.31	-	94%	30%
9	Yes	Yes	8 Drops	7.46	7.29	>1000	20.68	11.00	-	98%	47%
10	Yes	Yes	8 Drops	7.46	7.21	>1000	23.70	9.688	-	98%	59%
11	Yes	No	15 min	7.46	7.21	>1000	138.4	123.4	-	86%	11%
12	Yes	No	15 min	7.46	7.28	>1000	139.1	121.0	-	86%	13%
13	Yes	No	15 min	7.46	7.13	>1000	123.2	103.9	-	88%	16%

- No Data available

2.3. Sample 2 Results

A summary of the results for each test performed on Sample 2 are provided in Table 3.

Results

Eleven of the product tests observed significant reactions, but only six of the product tests performed met the turbidity goal of 50 NTU. The tests that met the turbidity goal include:

- ▲ Test 2 Floc 06
- ▲ Test 5 Liquifloc 1%
- ▲ Test 6 LB2101 (first) then Liquifloc 1% (second)
- ▲ Test 7 Biostar-CH 2%
- ▲ Test 9 Biostar-CH 2% (first) then APL Bridger (second)
- ▲ Test 10 APL Bridger (first) then Biostar-CH 2% (second)

Between 6% to 63% reduction was measured from filtering the final tested samples. Filtering did result in one additional test meeting the turbidity goal. The test that met the goal due to filtering was:

▲ Test 3 – SCI-CW-A0

The turbidity was re-measured for each test after all the tests were complete. The additional settling time resulted in one test meeting the turbidity goal. The test that met the goal due to additional settling time was:

▲ Test 3 – SCI-CW-A0

The initial pH for Sample 2 was 7.04. Only minor changes in pH (<1.0) were observed from the initial to final measurements for the tests.

Dwayne Stenlund and Bruce Holdhusen Minnesota Department of Transportation March 3, 2017

Exceptional outcomes.

Table 3. Sample 2 Results

Test	Significant Reaction	Turbidity Goal <50 NTU	Total Dose for Test ¹	Initial pH	Final pH	Initial NTU	Final NTU (Unfiltered)	Final NTU (Filtered)	NTU Measurement After All Tests Completed	Percent Reduction (Initial to Final Unfiltered)	Filtration Percent Reduction (Final Unfiltered to Final Filtered)
1 (control)	-	-	-	7.04	7.04	>1000	>1000	>1000	>1000	0%	0%
2	Yes	Yes	3 Drops	7.04	6.29	>1000	26.74	10.02	6.056	97%	63%
3	Yes	No	7 Drops	7.04	7.40	>1000	57.12	47.02	45.61	94%	18%
4	No	No	21 Drops	7.04	7.23	>1000	>1000	>1000	>1000	0%	0%
5	Yes	Yes	6 Drops	7.04	7.18	>1000	41.27	30.52	19.87	96%	26%
6	Yes	Yes	5 Drops	7.04	6.81	>1000	45.96	32.50	28.01	95%	29%
7	Yes	Yes	6 Drops	7.04	6.73	>1000	35.18	24.83	27.22	96%	29%
8	Yes	No	8 Drops	7.04	6.83	>1000	134.2	125.7	119.4	87%	6%
9	Yes	Yes	8 Drops	7.04	6.62	>1000	31.54	21.46	29.09	97%	32%
10	Yes	Yes	8 Drops	7.04	6.73	>1000	32.97	19.46	25.49	97%	41%
11	Yes	No	290 min	7.04	6.50	>1000	152.2	132.8	57.20	85%	13%
12	Yes	No	290 min	7.04	6.81	>1000	-	-	-	-	-
13	Yes	No	290 min	7.04	6.54	>1000	94.90	62.86	66.60	91%	34%

- No Data available

2.4. Sample 3 Results

A summary of the results for each test performed on Sample 3 are provided in Table 3.

Results

None of the product tests performed met the turbidity goal of 50 NTU, and only Two of the product tests observed significant reactions.

Filtering did not impact the results.

The turbidity was re-measured for each test after all the tests were complete. The additional settling time resulted in three tests meeting the turbidity goal. The tests that met the goal due to additional settling time were:

- ▲ Test 2 Floc 06
- ▲ Test 5 Liquifloc 1%
- ▲ Test 10 APL Bridger (first) then Biostar-CH 2% (second)

The initial pH for Sample 3 was 8.14. Only minor changes in pH (<1.0) were observed from the initial to final measurements for 11 of the product tests. Test 2 was the only test where the pH varies significantly between initial and final (final pH of 5.53).

Observations

While performing the test, initial product testing performed did not meet the target turbidity goal. It was noticed that after all test were completed the additional settling time allowed floc to settle which was not observed while tests were performed. There was a significant amount of floc that filled most of the water column. Based on this observation, the initial turbidity was significantly greater than 1000 NTU but could not be quantified.

Table 3. Sample 3 Results

Exceptional outcomes.

Test	Significant Reaction	Turbidity Goal <50 NTU	Total Dose for Test ¹	Initial pH	Final pH	Initial NTU	Final NTU (Unfiltered)	Final NTU (Filtered)	NTU Measurement After All Tests Completed	Percent Reduction (Initial to Final Unfiltered)	Filtration Percent Reduction (Final Unfiltered to Final Filtered)
1 (control)	-	-	-	8.14	8.14	>1000	>1000	>1000	>1000	0%	0%
2	No	No	16 Drops	8.14	5.53	>1000	>1000	>1000	5.160	0%	0%
3	No	No	30 Drops	8.14	7.79	>1000	399.1	391.8	377.7	60%	2%
4	No	No	4 Drops	8.14	7.85	>1000	587.6	-	635.6	41%	-
5	Yes	No	38 Drops	8.14	7.45	>1000	80.12	100.5	38.16	92%	-25%
6	No	No	12 Drops	8.14	7.24	>1000	>1000	>1000	>1000	0%	0%
7	No	No	29 Drops	8.14	7.73	>1000	763.5	760.2	612.4	24%	0%
8	No	No	33 Drops	8.14	8.00	>1000	>1000	>1000	>1000	0%	0%
9	No	No	40 Drops	8.14	7.75	>1000	573.7	549.8	486.8	43%	4%
10	Yes	No	48 Drops	8.14	7.43	>1000	233.4	-	50.16	77%	-
11	No	No	290 min	8.14	7.78	>1000	>1000	>1000	757.2	0%	0%
12	No	No	290 min	8.14	7.78	>1000	>1000	>1000	>1000	0%	0%
13	No	No	290 min	8.14	7.59	>1000	>1000	>1000	797.7	0%	0%

- No Data available

2.5. Sample 4 Results

A summary of the results for each test performed on Sample 4 are provided in Table 4. After Sample 4 testing was completed, the results from the previous 5 samples were reviewed and a shortened test list was created for testing samples moving forward.

Results

Seven of the 13 product tests observed significant reactions, but only five of the product tests performed met the turbidity goal of 50 NTU. The tests that met the goal include:

- ▲ Test 2 Floc 06
- ▲ Test 5 Liquifloc 1%
- ▲ Test 7 Biostar-CH 2%
- ▲ Test 9 Biostar-CH 2% (first) then APL Bridger (second)
- ▲ Test 10 APL Bridger (first) then Biostar-CH 2% (second)

Between 8% to 75% reduction was measured from filtering the final tested samples, however the filtering did not result in additional tests meeting the turbidity goal.

The turbidity was re-measured for each test after all the tests were complete. The additional settling time resulted in one test meeting the turbidity goal. The test that met the goal due to additional settling time was:

▲ Test 8 – APL Bridger

The initial pH for Sample 4 was 6.66. Only minor changes in pH (<1.0) were observed from the initial to final measurements for 10 of the product tests. The final pH for Test 2 was 3.91 and the final pH for Test 6 was 4.70.

Dwayne Stenlund and Bruce Holdhusen Minnesota Department of Transportation March 3, 2017

WENCK ASSOCIATES

> Responsive partner. Exceptional outcomes.

Table 4. Sample 4 Results

Test	Significant Reaction	Turbidity Goal <50 NTU	Total Dose for Test ¹	Initial pH	Final pH	Initial NTU	Final NTU (Unfiltered)	Final NTU (Filtered)	NTU Measurement After All Tests Completed	Percent Reduction (Initial to Final Unfiltered)	Filtration Percent Reduction (Final Unfiltered to Final Filtered)
1 (control)	-	-	-	6.66	6.66	507.9	507.9	496.6	443.4	0%	2%
2	Yes	Yes	7 Drops	6.66	3.91	507.9	44.20	11.15	11.75	91%	75%
3	Yes	No	10 Drops	6.66	7.35	507.9	146.5	114.9	111.3	71%	22%
4	No	No	35 Drops	6.66	6.85	507.9	492.9	454.5	552.9	3%	8%
5	Yes	Yes	34 Drops	6.66	6.10	507.9	49.00	35.00	21.93	90%	29%
6	Yes	No	12 Drops	6.66	4.70	507.9	102.0	84.00	91.50	80%	18%
7	Yes	Yes	25 Drops	6.66	6.01	507.9	31.36	11.31	8.280	94%	64%
8	No	No	33 Drops	6.66	6.42	507.9	338.3	150.8	22.80	33%	55%
9	Yes	Yes	60 Drops	6.66	6.16	507.9	33.36	21.12	20.76	93%	37%
10	Yes	Yes	64 Drops	6.66	6.57	507.9	40.68	22.81	31.68	92%	44%
11	No	No	300 min	6.66	5.95	507.9	474.9	412.3	323.7	6%	13%
12	No	No	300 min	6.66	6.04	507.9	372.6	337.4	277.9	27%	9%
13	No	No	290 min	6.66	5.90	507.9	395.1	335.8	258.4	22%	15%

- No Data available

2.6. Sample 5 Results

Sample 5 consists of three subsamples collected and tested from three separate BMPs at the project site. These three subsamples are referred to as 5-1, 5-2, and 5-3. A summary of the results for Samples 5-1, 5-2, and 5-3 are provided in Tables 5, 6, and 7 respectively.

Results

All four product tests observed significant reactions for Samples 5-1, 5-2, and 5-3. The tests performed on Samples 5-2 and 5-3 were only a rapid test where visual results were observed to have clarity that met the 50 NTU goal. Only three of the product tests performed on Sample 5-1 met the turbidity goal of 50 NTU. The tests that met the goal include:

- ▲ Test 3 SCI-CW-A0
- ▲ Test 5 Liquifloc 1%
- ▲ Test 7 Biostar-CH 2%

Filtered turbidity measurements were only collected for Sample 5-1. Between 57% to 67% reduction was measured from filtering the final tested samples. Filtering did result in one additional test meeting the turbidity goal. The test that met the goal due to filtering was:

▲ Test 2 – Floc 06

The initial pH for Sample 5-1 was 8.00 and only minor changes in pH (<1.0) were observed from the initial to final measurements for 3 of the product tests. Test 2 was the only test where the pH varied significantly between initial and final (final pH of 6.31). The initial pH for Sample 5-2 was 7.46, and Sample 5-3 was 7.49. Final pH was not measured for Samples 5-2 and 5-3.

Observations

Sample 5-1 was a grab sample collected from the bottom of a filtration basin that had mostly drawn down from the recent rainfall event. Samples 5-2 and 5-3 were grab samples collected from top of the water column of wet ponds. The samples were collected the day after a recent rainfall event.

The three subsamples were collected from separate BMPs at the project site and all had different initial turbidity conditions due to location in the treatment chain and exposure to direct erosion. Although the samples initial turbidity measurements are different, the samples water chemistry and sediment source/soil appeared to be similar. Sample 5-1 with a higher initial turbidity required a lower dose to achieve the target turbidity goal of 50 NTU, and Samples 5-2 and 5-3 with lower initial turbidity required a higher dose to achieve the target turbidity for these samples. This may indicate that the dose required may relate to suspended particle size and not the total amount of suspended solids. Samples with larger suspended particles may create larger flocs that can react and floc quicker than samples with smaller particles.

Responsive partner. Exceptional outcomes.

Table 5. Sample 5-1 Results

Test	Significant Reaction	Turbidity Goal <50 NTU	Total Dose for Test ¹	Initial pH	Final pH	Initial NTU	Final NTU (Unfiltered)	Final NTU (Filtered)	NTU Measurement After All Tests Completed	Percent Reduction (Initial to Final Unfiltered)	Filtration Percent Reduction (Final Unfiltered to Final Filtered)
1 (control)	-	-	-	8.00	8.00	>1000	>1000	-	-	0%	-
2	Yes	No	13 Drops	8.00	6.31	>1000	104.0	34.00	-	90%	67%
3	Yes	Yes	12 Drops	8.00	7.94	>1000	38.60	26.00	-	96%	33%
5	Yes	Yes	6 Drops	8.00	7.87	>1000	40.46	34.24	-	96%	15%
7	Yes	Yes	6 Drops	8.00	7.87	>1000	40.57	30.24	-	96%	25%

- No Data available

Responsive partner. Exceptional outcomes.

Table 6. Sample 5-2 Results

Test	Significant Reaction	Turbidity Goal <50 NTU	Total Dose for Test ¹	Initial pH	Final pH	Initial NTU	Final NTU (Unfiltered)	Final NTU (Filtered)	NTU Measurement After All Tests Completed	Percent Reduction (Initial to Final Unfiltered)	Filtration Percent Reduction (Final Unfiltered to Final Filtered)
1 (control)	-	-	-	7.46	7.46	282.8	282.8	-	-	0%	-
2	Yes	-	8 Drops	7.46	-	282.8	50.00	-	-	82%	-
3	Yes	-	16 Drops	7.46	-	282.8	50.00	-	-	82%	-
5	Yes	-	15 Drops	7.46	-	282.8	50.00	-	-	82%	-
7	Yes	-	20 Drops	7.46	-	282.8	50.00	-	-	82%	-

- No Data available

Exceptional outcomes.

Table 7. Sample 5-3 Results

Test	Significant Reaction	Turbidity Goal <50 NTU	Total Dose for Test ¹	Initial pH	Final pH	Initial NTU	Final NTU (Unfiltered)	Final NTU (Filtered)	NTU Measurement After All Tests Completed	Percent Reduction (Initial to Final Unfiltered)	Filtration Percent Reduction (Final Unfiltered to Final Filtered)
1 (control)	-	-	-	7.49	7.49	102.5	102.5	-	-	0%	-
2	Yes	-	8 Drops	7.49	-	102.5	50.00	-	-	51%	-
3	Yes	-	16 Drops	7.49	-	102.5	50.00	-	-	51%	-
5	Yes	-	20 Drops	7.49	-	102.5	50.00	-	-	51%	-
7	Yes	-	20 Drops	7.49	-	102.5	50.00	-	-	51%	-

- No Data available

2.7. Sample 6 Results

A summary of the results for each test performed on Sample 6 are provided in Table 8.

Results

All four product tests observed significant reactions, but only three of the product tests performed met the turbidity goal of 50 NTU. The tests that met the goal include:

- ▲ Test 2 Floc 06
- ▲ Test 3 SCI-CW-A0
- ▲ Test 7 Biostar-CH 2%

Between 33% to 48% reduction was measured from filtering the final tested samples. Filtering did result in one additional test meeting the turbidity goal. The test that met the goal due to filtering was:

▲ Test 5 – Liquifloc 1%

The initial pH for Sample 6 was 8.29. Only minor changes in pH (<1.0) were observed from the initial to final measurements for 11 of the product tests. Test 2 was the only test where the pH varies significantly between initial and final (final pH of 6.63).

Responsive partner. Exceptional outcomes.

Table 8. Sample 6 Results

Test	Significant Reaction	Turbidity Goal <50 NTU	Total Dose for Test ¹	Initial pH	Final pH	Initial NTU	Final NTU (Unfiltered)	Final NTU (Filtered)	NTU Measurement After All Tests Completed	Percent Reduction (Initial to Final Unfiltered)	Filtration Percent Reduction (Final Unfiltered to Final Filtered)
1 (control)	-	-	-	8.29	8.29	517.8	517.8	-	-	0%	-
2	Yes	Yes	5 Drops	8.29	6.63	517.8	18.65	10.91	-	96%	42%
3	Yes	Yes	12 Drops	8.29	8.10	517.8	48.43	28.67	-	91%	41%
5	Yes	No	20 Drops	8.29	7.89	517.8	59.76	40.16	-	88%	33%
7	Yes	Yes	20 Drops	8.29	7.66	517.8	46.52	24.42	-	91%	48%

- No Data available

2.8. Sample 7 Results

A summary of the results for each test performed on Sample 7 are provided in Table 9.

Results

All four product tests observed significant reactions, but only one of the product tests performed met the turbidity goal of 50 NTU. The test that met the goal is:

▲ Test 2 – Floc 06

Between 21% to 63% reduction was measured from filtering the final tested samples, however the filtering did not result in additional tests meeting the turbidity goal.

The turbidity was re-measured for each test after all the tests were complete. The additional settling time resulted in a test meeting the turbidity goal. The test that met the goal due to additional settling time was:

▲ Test 5 – Liquifloc 1%

The initial pH for Sample 7 was 9.58. Only minor changes in pH (<1.0) were observed from the initial to final measurements for 11 of the product tests. Test 2 was the only test where the pH varies significantly between initial and final (final pH of 7.61).

18 G-18

Dwayne Stenlund and Bruce Holdhusen Minnesota Department of Transportation March 3, 2017

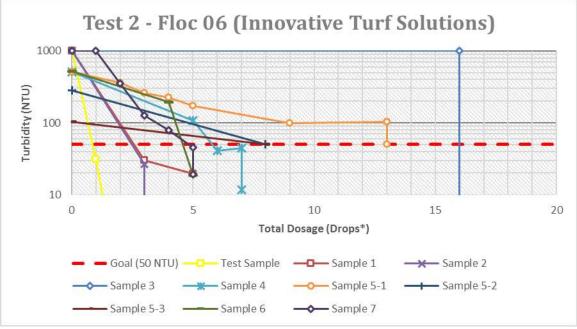
Exceptional outcomes.

Table 9. Sample 7 Results

Test	Significant Reaction	Turbidity Goal <50 NTU	Total Dose for Test ¹	Initial pH	Final pH	Initial NTU	Final NTU (Unfiltered)	Final NTU (Filtered)	NTU Measurement After All Tests Completed	Percent Reduction (Initial to Final Unfiltered)	Filtration Percent Reduction (Final Unfiltered to Final Filtered)
1 (control)	-	-	-	9.58	9.58	>1000	>1000	-	-	0%	-
2	Yes	Yes	5 Drops	9.58	7.61	>1000	45.43	16.87	19.14	95%	63%
3	Yes	No	28 Drops	9.58	8.93	>1000	224.1	164.6	188.1	78%	27%
5	Yes	No	29 Drops	9.58	8.60	>1000	183.0	118.6	28.94	82%	35%
7	Yes	No	37 Drops	9.58	8.70	>1000	216.4	171.8	107.1	78%	21%

- No Data available

3. Product Test Results and Observations Summary


Section 3 discusses results and observations for each product. Additional results for each product are presented in Tables 1 through 9 of Section 2.

3.1. Test 1 – Control Results

Test 1 is the control test. The purpose of the control test is to measure the initial sample conditions for comparison to the product tests. There are no specific results to discuss for test 1.

3.2. Test 2 - Floc 06 Results

Test 2 is the product Floc 06 test and was performed on all eight samples. The Floc 06 doseturbidity results for each sample tested are presented in Figure 1.

Figure 1. Test 2 - Floc 06 Dose-Turbidity Curve

*Measurement Spoon "Drop"

Results

The target turbidity goal of 50 NTU was achieved for all samples, however, the goal was not initially reached for Samples 3 and 5-1. The turbidity goal was reached for Samples 3 and 5-1 after additional settling time. For a couple of the samples, a final turbidity measurement was taken after all 13 tests were completed to check how additional settling time affected the turbidity reduction. For the Floc 06 product, it was shown that additional reduction benefit was measured after additional settling time. This measurement is shown in Figure 1 as the drop in turbidity at the final dose. Also, the results presented in Tables 1 through 9 show that the Floc 06 product can cause a shift in the pH of the sample.

Visual Observations

Dwayne Stenlund and Bruce Holdhusen Minnesota Department of Transportation March 3, 2017

Once the reaction occurred, the floc that formed was generally a large floc. For several samples, it was observed that the floc floated or a portion floated to the surface. Based on conversations with the manufacturer, this is due to hydrocarbons, pigments, or dyes present in the sample.

3.3. Test 3 - SCI-CW-A0 Results

Test 3 is the product SCI-CW-A0 test and was performed on all eight samples. The SCI-CW-A0 dose-turbidity results for each sample tested are presented in Figure 2.

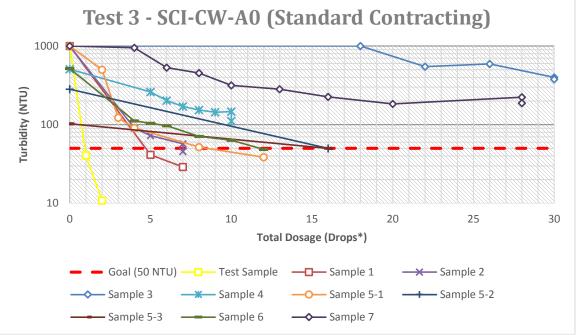


Figure 2. Test 3 - SCI-CW-A0 Dose-Turbidity Curve

*Measurement Spoon "Drop"

Results

The target turbidity goal of 50 NTU was achieved for five of the eight samples. For several of the samples, a final turbidity measurement was taken after all 13 tests were completed to check how additional settling time affected the turbidity reduction. For the SCI-CW-A0 product, it was shown that additional settling time did not provide a significant decrease in turbidity. This measurement is shown in Figure 2 as the drop in turbidity at the final dose as seen in samples 2 and 7.

Visual Observations

Once the reaction occurred, the floc that formed was generally a fine floc. For the samples that did not achieve the turbidity goal, it was observed that a reaction and floc did form, however, the sample was still turbid and additional product did not greatly improve the clarity.

6-21

3.4. Test 4 – Earth Poly-Stable Plus Results

Test 4 is the product Earth Poly-Stable Plus test and was performed on five samples. Test 4 was not included in the shortened test list for the Tailgate Test Kit and was not tested on the last three samples that were collected due to poor performance. The Earth Poly-Stable Plus dose-turbidity results for each sample tested are presented in Figure 3.

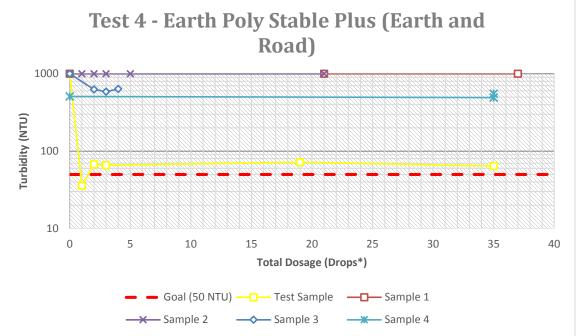


Figure 3. Test 4 - Earth Poly Stable Plus Dose-Turbidity Curve

*Measurement Spoon "Drop"

Results

The target turbidity goal of 50 NTU was not achieved for any of the samples that were tested. After the first dose added to the Sample Test, the turbidity measured was lower than the turbidity goal, however, after additional product was added the turbidity that was measured did not achieve the goal. This may be due to the fact that the floc particles could not settle because the sample would develop a thick/syrupy texture.

Visual Observations

It was observed that after dosing the sample would develop a thick/syrupy texture. Floc formulation was observed in the Test Sample but not the other samples that were tested. The floc that was observed was fine.

<u>77</u> G-22

3.5. Test 5 – Liquifloc 1% Results

Test 5 is the product Liquifloc 1% test and was performed on all eight samples. The Liquifloc 1% dose-turbidity results for each sample tested are presented in Figure 4.

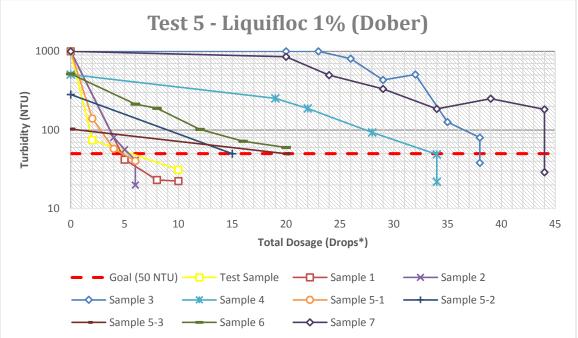


Figure 4. Test 5 - Liquifloc 1% Dose-Turbidity Curve

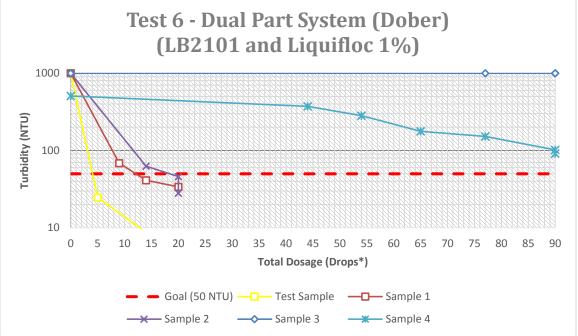
Results

The target turbidity goal of 50 NTU was achieved for seven of the eight samples, however, the goal was not initially reached for Samples 3 and 7. The turbidity goal was reached for Samples 3 and 7 after additional settling time. For several of the samples, a final turbidity measurement was taken after all 13 tests were completed to check how additional settling time affected the turbidity reduction. For the Liquifloc 1% product, it was shown that additional reduction benefit was measured after additional settling time. This measurement is shown in Figure 4 as the drop in turbidity at the final dose. Sample 6 was the only sample that the turbidity goal was not achieved. However, further dosing of Sample 6 may have achieved the goal, and/or additional settling time may have resulted in meeting the goal.

Visual Observations

Once the reaction occurred, the floc that formed was generally a medium floc.

3.6. Test 6 – Dual Part System (LB2101 and Liquifloc 1%) Results


23 G-23

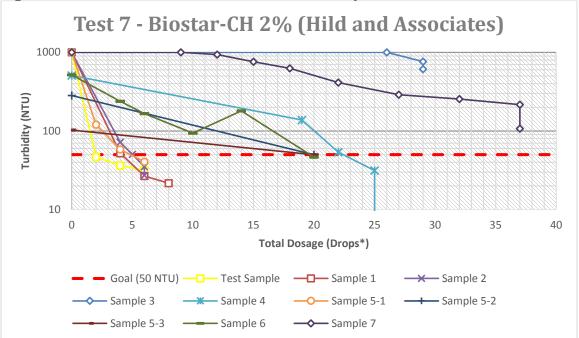
^{*}Measurement is a Drop from a 1ml Disposable Pipette

Test 6 is the Dual Part System (LB2101 and Liquifloc 1%) test and was performed on five samples. The results were similar to the results of Liquifloc 1% alone and as a result, the shortened test list for the Tailgate Test Kit did not include Test 6. Test 6 was not tested on the last three. The Dual Part System (LB2101 and Liquifloc 1%) dose-turbidity results for each sample tested are presented in Figure 5.

*Measurement Spoon "Drop"

Results

The target turbidity goal of 50 NTU was achieved for three of the five samples.


Visual Observations

Once the reaction occurred, the floc that formed was generally a medium floc. The results were similar to results from testing Liquifloc 1% alone. The total dosage is higher due to the addition of two products compared to liquifloc 1% alone.

3.7. Test 7 – Biostar-CH 2% Results

Test 7 is the product Biostar-CH 2% test and was performed on all eight samples. The Biostar-CH 2% dose-turbidity results for each sample tested are presented in Figure 6.

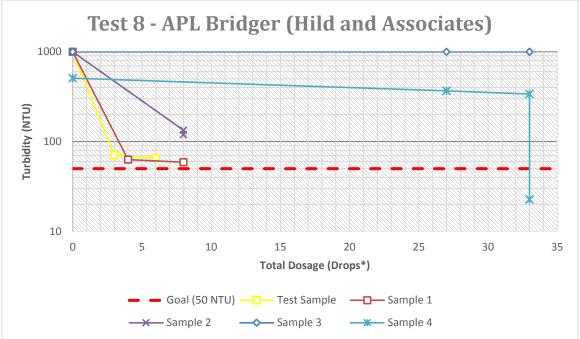
Figure 6. Test 7 - Biostar-CH 2% Dose-Turbidity Curve

Results

The target turbidity goal of 50 NTU was achieved for six of the eight samples. For several of the samples, a final turbidity measurement was taken after all 13 tests were completed to check how additional settling time affected the turbidity reduction. For the Biostar-CH 2% product, it was shown that additional settling time did provide a decrease in turbidity. This measurement is shown in Figure 6 as the drop in turbidity at the final dose.

Visual Observations

Once the reaction occurred, the floc that formed was generally a medium floc. For the samples that did not achieve the turbidity goal, it was observed that a reaction and floc did form, however, the sample was still turbid and adding product did not greatly improve the clarity.


25 G-25

3.8. Test 8 – APL Bridger Results

^{*}Measurement is a Drop from a 1ml Disposable Pipette

Test 8 is the product APL Bridger test and was performed on five samples. Due to the test results, Test 8 was not included in the shortened test list for the Tailgate Test Kit and was not tested on the last three samples. The APL Bridger dose-turbidity results for each sample tested are presented in Figure 7.

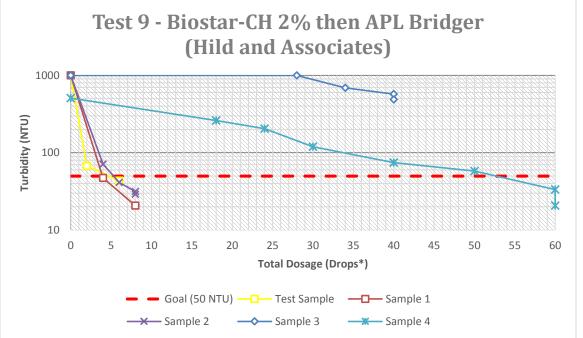
Figure 7. Test 8 - APL Bridger Dose-Turbidity Curve

*Measurement is a Drop from a 1ml Disposable Pipette

Results

The target turbidity goal of 50 NTU was achieved for one of the five samples, however, the goal was not initially reached. The goal was reached after additional settling time when the sample was retested after all 13 tests were completed. This measurement is shown in Figure 7 as the drop in turbidity at the final dose.

Visual Observations


In general, a significant reduction was observed with the APL Bridger product, however the reduction did not meet the turbidity goal of 50 NTU. Once the reaction occurred, the floc that formed was generally a fine floc. After Product application, the color of the sample was stained compared to the color of other product sample tests. This could be pigment in the water sample that was removed in other product tests.

3.9. Test 9 – Biostar-CH 2% (First) then APL Bridger (Second) Results

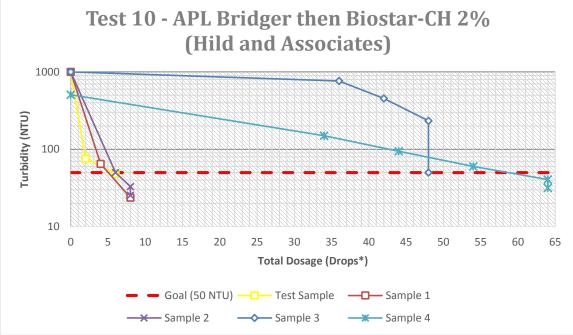
Test 9 is a two-part system of Biostar-CH 2% (First) then APL Bridger (Second) and was performed on five samples. The results were similar to the results of Biostar-CH 2% alone and as a result, the shortened test list for the Tailgate Test Kit did not include Test 9. Test 9 was not tested on the last three samples that were collected. The two-part system of Biostar-CH 2% (First) then APL Bridger (Second) dose-turbidity results for each sample tested are presented in Figure 8.

*Measurement is a Drop from a 1ml Disposable Pipette

Results

The target turbidity goal of 50 NTU was achieved for four of the five samples.

Visual Observations


Once the reaction occurred, the floc that formed was generally a medium floc. The results were similar to results from testing Biostar-CH 2% alone.

3.10. Test 10 – APL Bridger (First) then Biostar-CH 2% (Second) Results

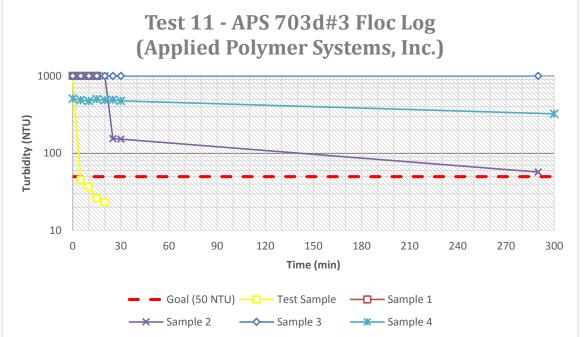
Test 10 is a two-part system of APL Bridger (First) then Biostar-CH 2% (Second) and was performed on five samples. The results were similar to the results of Biostar-CH 2% alone and also Test 9. As a result, the shortened test list for the Tailgate Test Kit did not include Test 10. Test 10 was not tested on the last three samples that were collected. The two-part system of APL Bridger (First) then Biostar-CH 2% (Second) dose-turbidity results for each sample tested are presented in Figure 9.

*Measurement is a Drop from a 1ml Disposable Pipette

Results

The target turbidity goal of 50 NTU was achieved for all five samples.

Visual Observations


Once the reaction occurred, the floc that formed was generally a medium floc. The results were similar to results from testing Biostar-CH 2% alone.

3.11. Test 11 – APS 703d#3 Floc Log Results

Test 11 is the product APS 703d#3 test and was performed on five samples. Test 11 was not included in the shortened test list for the Tailgate Test Kit and was not tested on the last

three samples. The APS 703d#3 test dose-turbidity results for each sample tested are presented in Figure 10.

Figure 10. Test 11 - APS 703d#3 Floc Log Dose-Turbidity Curve

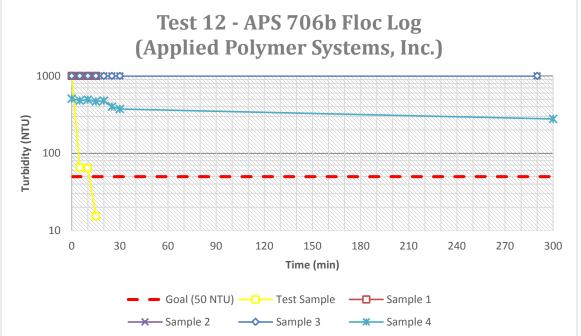
Results

The target turbidity goal of 50 NTU was achieved for one of the five samples.

Visual Observations

A significant reaction was observed for two of the samples. For three of the tests, turbidity readings were measured after approximately 290-300 minutes of contact time and the target turbidity goal was not achieved. This contact time is significant in consideration for scaling to full scale application.

3.12. Test 12 – APS 706b Floc Log Results


Test 12 is the product APS 706b test and was performed on five samples. Test 12 was not included in the shortened test list for the Tailgate Test Kit and was not tested on the last

29 G-29

\\francis.wenck.local\vol1\0791 MnDOT\44 Tailgate Test Kit\Task 4 - Field Testing\Results Memorandum.docx

three samples that were collected. The APS 706b test dose-turbidity results for each sample tested are presented in Figure 11.

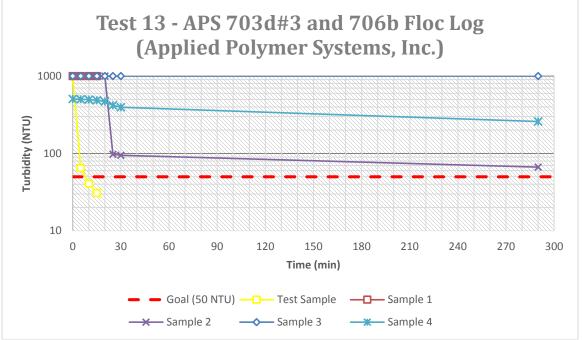
Figure 11. Test 12 - APS 706b Floc Log Dose-Turbidity Curve

Results

The target turbidity goal of 50 NTU was achieved for one of the five samples.

Visual Observations

A significant reaction was observed for only one of the samples. For three of the tests, turbidity readings were measured after approximately 290-300 minutes of contact time and the target turbidity goal was not achieved.


3.13. Test 13 – APS 703d#3 Floc Log and APS 706b Floc Log (Simultaneously) Results

Test 13 is the products APS 703d#3 Floc Log and APS 706b Floc Log (Simultaneously) test and was performed on five samples. Due to the test results, Test 13 was not included in the

30 G-30 **Dwayne Stenlund and Bruce Holdhusen** Minnesota Department of Transportation March 3, 2017

shortened test list for the Tailgate Test Kit and was not tested on the last three samples that were collected. The APS 706b test dose-turbidity results for each sample tested are presented in Figure 12.

Figure 12. Test 13 - APS 703d#3 and 706b Floc Log Dose-Turbidity Curve

Results

The target turbidity goal of 50 NTU was achieved for one of the five samples.

Visual Observations

A significant reaction was observed for two of the samples. For three of the tests, turbidity readings were measured after approximately 290 minutes of contact time and the target turbidity goal was not achieved.

31 G-31

Responsive partner. Exceptional outcomes.

To: Dwayne Stenlund and Bruce Holdhusen, Minnesota Department of Transportation

From: Kirby Templin, Wenck Associates, Inc.

Date: March 3, 2017

Subject: Field Notes Memorandum

Samples were collected and tested to develop the Tailgate test kit from eight sites. The field notes collected while performing the tests are included in the following Attachments.

ATTACHMENTS

Attachment A - Test Sample (Synthetic sample made from pond sediments)
Attachment B - Sample 1 (From a discharge hose at a St. Croix River construction site)
Attachment C - Sample 2 (From a discharge hose at a Hwy 53 construction site in northern MN)
Attachment D - Sample 3 (From a discharge hose at a St. Paul Technical College construction site)
Attachment E - Sample 4 (Created from a soil sample and water collected at a Hwy 371 construction site in central MN)
Attachment F - Sample 5 (Grab samples from three separate BMPs from a Hwy 36 and Lex. Ave. construction site in Roseville)
Attachment G - Sample 6 (Runoff grab sample from a Hwy 96 construction site in the north metro)
Attachment H - Sample 7 (Synthetic sample made from a Nemadji River construction site soil and distilled water)

Attachment A

Test Sample (Synthetic sample made from pond sediments)

Responsive partner. Exceptional outcomes.

Date: 5-25-6 \$ 6/1/16 \$ 6/1/6 Site: Wanck Basement (G-V)

Field Analyst(s):

Kirby Templin (Wenck)

Louis Sigtermans (Wenck)

leff Strom (Wersk): -

Cliver

		Product Test List	
Test #	Test Completed	Product Name	Manufacturer
1	X	Control	-
2	×	Floc 06	Innovative Turf Solutions
3	X	SCI-CW-A0	Standard Contracting
4	X	Earth Poly Stable Plus	Earth and Road
5	X	Liquifloc 1%	Dober
6	X	LB2101 (first) then Liquifloc 1% (second)	Dober
7	×	Biostar-CH 2%	Hild and Associates
8	×	APL Bridger	Hild and Associates
9	X	Biostar-CH (first) then APL Bridger (second)	Hild and Associates
-40/1		APL Bridger (first) then Biostar-CH (second)	Hild and Associates
11	\times	APS 703d#3 Floc Log	Applied Polymer Systems, In
12	\times	APS 706b Floc Log	Applied Polymer Systems, In
18.	X	APS 703d#3 Floc Log and 706b Floc Log (simultaneously)	Applied Polymer Systems, In

Measurement Spoon	Equivalent Measurement	Volume Equivalent (fl oz)	Volume Equivalent (mL) 0.07701	
Drop	1/64 Teaspoon (1/2 Smidgen)	0.002604		
Smidgen	1/32 Teaspoon (1/2 Pinch)	0.005208	0.1540	
Pinch	1/16 Teaspoon (1/2 Dash)	0.01042	0.3081	
Dash	1/8 Teaspoon (1/2 Tad)	0.02083	0.6161	
Tad	1/4 Teaspoon	0.04167	1.232	

Date: 5-25-16 Site: Wender Basement (GV) Synthetic Sarph of 12 Tab to 1000 ML Date: Field Analyst(s): Kirby Templin ouis Sig tern ans Sig NECOR Reaction? ontro **Product Tested:** Mixing Method: Rapid Mix (Shaking) or Slow Mix DUITING 50%0 **Pre-filter** Post-filter Time Temp (°C) pН Reading Turbidity (NTU) Turbidity (NTU) 7,69 31 :52 Initial Λ 1 0 9 Final (K min after floc addition) 7.60 20.67 Silper heading Susperf Dosing Table: Time Unit Notes: Dosage Approximately how long to get reaction? This asa 40 were Total: 8 - P

Test Z

Date: <u>S-25-16</u> Site: <u>Wenck Bacene</u> SynKutic Samph of Product Tested: <u>F)OC</u> Mixing Method: <u>Rapid Mix (Shakir</u>)6 (I.	movative-	Kirby	alyst(s): <u>Templin</u> <u>Sigtern</u> <u>signific</u> <u>signific</u> <u>reductor</u> <u>sof</u>		
Reading	Time	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)	
Initial	7:300m	20.67	7.69	(30.8)	UMAADO	
Final (X min after floc addition)	2:147	21.27	7,02	0.540	0,828	
wait Total Dosa Dosing Table:	ge NTU	oglizo É: her		Kan	suct cevel do	se place
Time Dosage Unit	> 31.63 App	roximately how	long to get r	eaction? 1 30	sect averages	jst- "
2:42 Smill Z day	0540 *	filler is	Simol	a coffee f	Her	
			an I	dition of 2n		
		P	A	1	1 dryp floc	
Total:		vu	is Dric	her ad muc	h lorger.	

- Tome

Sheet _____ of _____

Test 3

Site: Synt Product 1		R mp SC	asem le of l- Cl	N-1	A0		L Kirl	y Templi y Templi Redictio	h	N V	
	Reading			Tin	ne	Temp (°C)	рН	Pre-filter Turbidity (NTU		-filter ty (NTU)	
	Initial					20.67	7.69	(140.0)			888-
Final (X n	nin after floc	_			10 m	71.62	7.68	10.8b	7.3	1 468	
Dosing Tab	le:	Top	al Doso	f				n	eadings	speck	
Time	Dosage	1 de	Unit		Note	es:		1	^ ~		۵
11:30 m	1 grob	1	grog ip	n30		oximately how			Non ?	90 se	con \$5.
11:37am	Idrop	5	drops	azen	*	iller is Sim	phacof	tee filter.		later	-
	, 	\square		_			TI	1.0.1	- 1	1	No Filder
		+					Time	Wait	Doroy	-	NTU naly
	1	+		-	-		11:30	1 Carl	lorop	2	10 81
				-	8		11.210	M JULIA	Lorop		19,00
Total:					2						
				_	5						
		E)			1						
					24						-
										11	
								1	1	1	

.

Test 4

	Date: 5-25-16 Site: Wenck Basement SyntRiti & Sample of 12- Product Tested: Earth Po Mixing Method: Rapid Mix (Shakin	a) or Slow Mix (Stirring) Frederica 750%
	Reading	Time Temp (°C) pH Pre-filter Post-filter Turbidity (NTU) Turbidity (NTU)
	Initial	2:25 m 20, 67 7.69 107.95
	Final (X min after floc addition)	3:18 pry / 64-18 32.96 media Squa
**	Dosing Table: Time Dosage Unit 2:35 pr fr 1 1 drog 1:42 pr fr 1 2 drop 2:44 pr fr 1 3 drop 3:00 pr fr 1 TAD 3 hap 3:08 pr fr 1 TAD 3 tAD 3:08 pr fr 1 TAD 3 tAD	V Notes: 2 35.70 Approximately how long to get reaction? 67.56 * Filter is Singly a coffee filter 65.77 71.74 64.18
	Total:	* A reaction oand ofter 1st doce, * did not apper to react after 2 to doce
		The second

tabliscoss mixing and why No me the after I ad chose.

** did not shake for last AD Dosage. - There was a Thick ger layer That deve byed sheet _ of _ at top of sample in Mining containers

Test 5

Date: 5-15-16 Field Analyst(s): Kirby Templin site: While have next (6V) Synthinic Sample at 12 Tal to 1000 ml Rimans Signihan Reaction? Product Tested: Liquifloc 170 (Dober) Mixing Method: Rapid Mix (Shaking) or Slow Mix (Stirring) Pre-filter Post-filter readinged Time Temp (°C) pH Reading Turbidity (NTU) **Turbidity (NTU)** 20.67 7.69 Initial 3:30pm 15.0 Final (K min after floc addition) 21.55 7.05 3:55pm 0:302 total Dosing Table: Dosage Time Unit Notes: and ۱ Approximately how long to get reaction? * filter is simply a coffee filter, /m." Arop 9 mi 4 3m -104 4 mil 200 didnot sen reaction OCCUM 5. Dm. while a delig will MIXM Joel \$ Total: -Sec Next 51 5:30 7 7:30 9 drog 12 ups 11 8 14 Ĩ 6:30 13 defice drap t long formsamle bottly sent for pod 14 9 nantachin rops 15 15 9:30 SUS 10 16 dyps dops 10:30 18 Orops 11 19 chop i 11:30 Sheet _____ of A 26 1d dops H-8 12:30 dryps

Test 5

Date: 5-25-16		Field Analyst(s):	
1.12 Decen	(av)	louis Sigter mans	
site: Wenck Dacenny Synthit's Sample of		louis sigter mans	
syntute sample of	12 Tad to 1000m		
Product Tested: <u>Liquiflac</u>	1% (Dober	-) Significat Reaction? Y N	
Mixing Method: <u>Rapid Mix</u> (Shaking	g) or slow Mix (Stirring)	Peduction (Y) N 750%	0
Reading	Time Temp (°C)	pH Pre-filter Post-filter Year Turbidity (NTU) Turbidity (NTU) 505	self
Initial	4:05 20.67	7.69 130.9	
Final (Smin after floc addition)	4:30 20,33	7.27 31.28 19.51	
p/			
Dosing Table: Shot time : 41	total		
Minine Dosage Unit	Notes:	to recent derta ATTA FILE I	11.
O Z Z dop	Approximately how	ton accurd destry NTU offer 5 mile set	Hing.
		74-31	9
6 1 3 Aop			
6:30 1 4 dap			
7:00 1 5 dup			
9:30 1 6 dEc			
arold 1 7 days	AB		
USU I A de	1		
10:30 1 8 dop		i i was needer	
11:30 1 9 dag	- nurtul	Smin took Nin minday	
12-30 1 10, Anna	IE		
Lid. of The proge	* stir for	5 cocords, let sit to react	
	for manil	5 seconds, let sit to react	
	let stal	Su Smings For testy NTU.	
	If nelvade		
	110	pesulty atter NTU rady add	1
	1 dap i	mit with gad renchan to test	Nys
	1.	- 1 11 mil to the tal	0
	eny 30	The headys.	×.
	GI IF	TI handus	
	Thu (N	22	
		Sheet / of	

Test 6

Exceptional outcomes. 5-25-16 Date: Field Analyst(s): Kirles Templin site: Wende Basement (GV) Synthetic Somple of 12 Tad to 1000 ml Sid fer mans Signifia Reaction? ligniflor 1% ad Product Tested: N aliquifle 1% Hin N Mixing Method: Rapid Mix (Shaking) or Slow Mix (Stirring) >50%0 veading Suspect Pre-filter Post-filter Reading Time Temp (°C) pН Turbidity (NTU) **Turbidity (NTU)** 5:00 00 pm Initial 20,67 7.69 Final (X min after floc addition) :24 50 7.62 758 Storting time 5:06 pm Notes: nurche movita Smin ad took NTU needing tot Dosing Table: Mighte Posage Unit ()Ovop Approximately how long to get reaction? ~ coffee :30 ili Filly × B Shake Sseconds NON 82101 3 Egnifle L 1% Dose OPSWI Dove Light 1/2 4 Dive 12: 10 SLP Total: Undrson mixing fines 1 Z 2 3 7 2 When renctif scarry with 4 3 3 for NTU 5 restr 3 minty 3 6 4 lidd whe find white Steps for first white No 4 7 4 8 4 5 9 5 5 10 5 6 11 6 6 12 T3 14 0 15 Sheet 1 *Total LB2101 Tigviflar 1%

Test7

				Exceptio	onai outcomes.
Date: 6-1-16 Site: Wenck Basema Synthitic Sample of Product Tested: Dio Star- Mixing Method: Rapid Mix (Shaking			Field An KN Low L	alyst(s): 12 Jayo log is Signermans iakes) Sign Reaction? Nodwarm Nodwarm 750% (1)	N N
Reading		Temp (°C)	pH		dity (NTU)
Initial	407	51.31	7.23	31.59 20.	MUCh C
Final (X min after floc addition) Sturt Time: 4:17 Dosing Table: Market Dosage (0 Unit 0 Market 1 Drop 0.5 1 0 Pro 0.5 1 3 Drop 1.3 Drop 1	Notes Approx Approx A A Approx A A Approx A A Approx A A A A A A A A A A A A A A A A A A A	MU How	Biostu Biostu March Lesoral	Faki reality's befor d 1, nowh & minds 6.47 a lifter fil a lifter fil of 30 sec nusura Tam Smi ah fir of Jupp to ce	standy gayle - standy wide

Sheet _____ of _____

Test 8

Date: 6-1-16	Field Analyst(s): Kivby Temp bu
site: Wencle Basement (Synthetic Surger of 12 Ta	(to locome
Product Tested: APL Bridger	(Hild and Associates) Reaction? (Y) N
Mixing Method: Rapid Mix (Shaking) or Slow	Mix (Stirring) reduction Sorra () N
Reading	Turblatty (NTO) Turblatty (NTO) Suspect
Initial 4.4	on milling 100 70. The mount
Final (X min after floc addition) 5 , 03	pm 20.39 7.93 55.68 32-90
Stort time: 4:49 Dosing Table:	forst reaction articul, united 5 mints for reading \$70,76
Dosage Unit	Notes: 70,70
O I (Tage)	Approximately how long to get reaction?
0.5 1 d Prip -	* filtvissing a culler film.
1 1 3 Dar	
Willie	
7 1 4 Dryp	
7.5 1 5 Drs	* I drap Apl Bridger stir 5 servis
8 1 6 Prop.	Wit remainer of 30 seord. Report
Total:	until Floculation Noticeds wait 5 mints
	to take Mendry, Add tongs It seals
	until max 1280 17 11 acheined
really-	until Mix 1280 17 is acheived.
65.68-	
-	
2	

·lest 9

Date: 6-1-16 Field Analyst(s): Kirby Templin site: Werck Basement (GV) Synthetic sample of 12 The to 1000 mc Siatemans Louis (for (second) Sign Hice ht Reaction? () (Hild & Associates) Product Tested: Bostar-CH (first) Kin APL Bridger (second) N reduction 750% Mixing Method: Rapid Mix (Shaking) or flow Mix (Stirring Joseph and a start of Pre-filter Post-filter Time Temp (°C) Reading pH Turbidity (NTU) **Turbidity (NTU)** 21.31 11/1 5:19 7.23 Initial (135.3) Final (X min after floc addition) 5.33 m 19.30 7,62 43,49 24,29 Dosing Table: - first real y taken after reaction. Beta idil Smints. NTUrrendiy -> 67.35 W/ Time Notes Unit Dosage 0 R 1 Prys Approximately how long to get reaction? a cuber title filter is singly 0.5 Z 6 3 B Do 4 A 6.1 5 B A 7:30 1 6 Biostral Total: chis 5 seards heit newson of 30000 APL Bridered stir NTU rend: ands." Ntu neady only 43.49 Biosta-CHarl APL Brids E There une And a regitice Product Code B= Biosta - CHigh Dags repeat Hond results. A = APL Bridge Drop

A Call Mon Sachar, is the a rever add spects addest device when addy fayerst? Sheet of 1

Date: 6-1-16 Field Analyst(s): Kirby Templin site: Warch Basement (GU) Synthetic saple of 12 Tad to 1000ml Louis Sigtemans Product Tested: <u>APL Bridger (First) Hun Bidsty - CH (secal)</u> Significant Reaction? Y (Hild and Associates) veduction >50% Mixing Method: Rapid Mix (Shaking) of Slow Mix (Stirring) Pre-filter Post-filter neading Reading Time Temp (°C) pH whated Turbidity (NTU) Turbidity (NTU) 5:480m 21.31 7.23 Initial (157.9 6:01pm 19,87 22.46 48,14 Final (X min after floc addition) Start time: 5:50pro Dosing Table: a first reaction noticed, waited 5 minute, Marcada 75,97 Ju Unit Time Dosage Notes DNP 0 Approximately how long to get reaction? * Filt is simply a color. filter B 0.5 Dap 6 3 A B 6.5 4 A Dinp 7 Dmp 7.5 6 B Bridger nemindrest would 30 secures Total: secon add Bigster CH and shir 5 1 days remarker of 30 wonds-Take NTU ready. Biester CH APLBridger nearly only ath Both 48.14 Bioster-CH 2% home been alded Product Code B = Piostar-CH 28 Deep mas a reaction. repeat intil A=APL Bridger Dop

Sheet of

Test 11

Date: 6/2/16 Field Analyst(s) lemp Wench Basement Cov Site: Hentic Sample of 12 Tad to 100mc #3 Flee Log Pelyour Systems, Inc Sighi h con 1 Reaction? 7036 PS Ν Product Tested: _____A CAPPIred Mixing Method: Rapid Mix (Shaking) or Slow Mix (Stirring) 50% Post-filter **Pre-filter** Time Temp (°C) pH Reading Turbidity (NTU) **Turbidity (NTU)** ", John 40 .95 116. 8 Initial 2:56pm D. Final (X min after floc addition) Stuttine? 2:30 pm Dosing Table: NTU Notes: Dosage Unip Time (^) O Approximately how long to get reaction? 45.58 10 Stindfor 30500 15 26 20 tou Aigo Total: SILERA Time (Min) when reaction was not decoded. decure. 0 noted to first occus 10 n ac ni

Sheet _____ of ____

Test 12

53

Responsive partner. Exceptional outcomes.

	20 99 7993 20					
	Date: 6/2/16			Field An	alyst(s):	
				KN	1 TGaolin	
	site: Wenck Basement Syntatic Sample of 12	LIV		Pire		
	Site: Wearch Suscentry	(0-1)		-101	1 sigtemons	
	Syntatic sample of 12	lad to	1000mL	con	\$ sigterneds	
	Product Tested: APS 706	6 Ploc	log		Reaction? (Y) N	
	(A.	olied Polis	marsyster	S. Inc.)		
	Mixing Method: Rapid Mix (Shakin	art	/)	reduction (y)	
	Plixing Pletiou. Kapid Plix (Slakin	g) of Slow Mix	(Surring)		> 50% [1] N	
	Reading	Time	Temp (°C)	pH	Pre-filter Post-filter Vencin	Y)
	distoria de la companya de la	2 - 0	Temp (c)		Turbidity (NTU) Turbidity (NTU)	et
	Initial 5.	2	1.95	7.40	150.45 411111111	
	Final (X min after floc addition)	3:34pm	20.47	7.79	15.30 11.45	
	Start + June 3:14 Dosing Table:	1		5		
	Time Dosage	MA Not	es:			
	O loike -		roximately how	long to got r	appring?	
	5 157		roximately now	iong to get i	eaction	
	3 - 6),1	4 —			· · · · · · · · · · · · · · · · · · ·	
- E						
	10 - 64.5	2 _				
Stin	2					
30 secul	15 - 15.30	<i></i>				
	Total:	×	Add :	pencilo	user cize piece (size that	
		- u	and fit	in da	op size measuring spood).	
5	(\dots) (\dots) (\dots)	_ ل بل	t's A	1 in		
1, he	(Min) when reaction was rst accure Iminte # noticed	normal c) ACT	<u><u> </u></u>		
	1 Ininte		apr 101	U Mara	ly-stir for 30 reads	
tot	rst occure know	1	A brain	<u>+) </u>	10 min and take Nru	
	* 01.000	10 ne	ndy.	repeart	vutil desired results.	
	Stimyfin	slid.	1	19 4 01		
		6				
		-				

Sheet _____ of _____

test 13

							exceptional outcomes.	
	1.1	17						
	Date: 6/d/	16			Field An	alvet(a).		
	Date:			N	Field An	alyst(s):		
	1	*	× /	1	Kir	by Templin		
	site: Wayche Synthetic S	Basem	nt (6)		1 .	1	c	5
	Site:	3.01 500 50	<u> </u>		Louis	Sigtema	1>	
	Suitetic S.	male af	2 12 Tal	1000 A	nC	\mathcal{I}	1	
	/	9					Inart	
			(217) August 20			. 11 marshed &	ion ha	
	Braduct Tostady A	05703d	#3 and	7061 F	Floc Loal	SUNU Reaction?	$J(\vec{Y}) N$	
	>yuteric > Product Tested: <u>A</u> (Applied Mixing Method: <u>Rapic</u>	1.	0	1.00	ne roge	r		
	(Applied	Poluna	Systems	Inc)		1 ()	The Al	
	· · · · · · · · · · · · · · · · · · ·					vencto	P/Y/N	
	Mixing Method: Rapid	d Mix (Shaking	g) of Slow Mix	(Stirring)		>50%		
						/ 30/		
1						Pre-filter	Doot filter	
	Reading		Time	Temp (°C)	pH	Turbidity (NTU)	Post-filter Turbidity (NTU)	- heading
				1		Turbuncy (1910)	WALLAL (NIO)	1 auto
	Initial		3:450-	21.95	7.40	(14) 7)	HIIII MA	Suspect
	Final (X min after floo	addition)				2071	2221	
	Final (X min arter not	addition	1. USpi	20,46	1,62	30.87	23,26	
	111171	7	, V					
	String Table:	pm						
	Dosing Table:	NTU						
	Time Dosage	Unit	Not	es:				
-								
· 2	0 per	-	App	oximately how	long to get re	action?		
	6 -	6/2-1	71					
/	3	07.1	<u> </u>					
zorec	10 -	40.7	5					
50	9 10	220						
30ger	15 -	30.8	2					
9) 1
/								the prochess
f i							EI	at some tico
		A	-26	100	1	5277 (2) S	is ze piece (3 asvig span. videtes and	- N.
ŀ	e/		7	Add	+ penc,	craser z	ize piece (3	ize Thit
	Total:		tre	uld fit	in cher	cier me	asing Spoon.)
1			CI		0	11 5		
-		each?	317	r for In	inste,			
	Tome (mil) when "	er chan	ws N	TU rea	du- S	tic 30 cen	ds ad not	1-
		[10 5		1 1 1 1	is our rai	1
Not	a to first occure.	1 minut	1 an	sta Sm	inves	a take Ny	the radio i	epeart
	# 1. 0	freedona	2 1/100	51 desi.	and not	- 120)	0
	N- 100		V 117	11 51	cer is	01120		
	ctir	ry finisled	,					
		/						
			<u> </u>					

Dwayne Stenlund and Bruce Holdhusen Minnesota Department of Transportation March 3, 2017

Attachment B

Sample 1 (From a discharge hose at a St. Croix River construction site)

Test Checklist

Responsive partner. Exceptional outcomes.

Date: 7/21/16

site: Sf. Cruix

Field Analyst(s):

Kirby Templin (Wenck)

Louis Sigtermans (Wenck)

leff Strom (Wenck)

Other

Product Test List							
Test #	Test Completed	Product Name	Manufacturer				
1	Х	Control	-				
2	X	Floc 06	Innovative Turf Solutions				
3	X	SCI-CW-A0	Standard Contracting				
4	X	Earth Poly-Stable Plus	Earth and Road				
5	<u> </u>	Liquifloc 1%	Dober				
6	X	LB2101 (first) then Liquifloc 1% (second)	Dober				
7	X	Biostar-CH 2%	Hild and Associates				
8	X	APL Bridger	Hild and Associates				
9	\times	Biostar-CH (first) then APL Bridger (second)	Hild and Associates				
10	<u> </u>	APL Bridger (first) then Biostar-CH (second)	Hild and Associates				
11	X	APS 703d#3 Floc Log	Applied Polymer Systems, Inc				
12	X	APS 706b Floc Log	Applied Polymer Systems, Ind				
13	<u> </u>	APS 703d#3 Floc Log and 706b Floc Log (simultaneously)	Applied Polymer Systems, Inc				

Measurement Spoon	Equivalent Measurement	Volume Equivalent (fl oz)	Volume Equivalent (mL) 0.07701	
Drop	1/64 Teaspoon (1/2 Smidgen)	0.002604		
Smidgen 1/32 Teaspoon (1/2 Pinc		0.005208	0.1540	
Pinch	1/16 Teaspoon (1/2 Dash)	0.01042	0.3081	
Dash 1/8 Teaspoon (1/2 Tad)		0.02083	0.6161	
Tad	1/4 Teaspoon	0.04167	1.232	

A DE TRANSPORT		Test #	ŧ 1	Associates Responsive partner. Exceptional outcomes.	
Date: 7/21/16				Analyst(s):	
site: St. Croix				Templin (Wenck) Sigtermans (Wenck)	
site: St. Croix				rom (Wenek)	
			Other		
Product Tested: Control	γ.		-	Significant Reaction? Y	
Mixing Method: No Mixing Method				Reduction to < 50 NTU? Y	
Sample Parameters:				Freihal Neadings Suspect	t, so
Reading	Time	Temp (°C)	pН	Pre-filter Turbidity (NTU) Turbidity (NTU)*	612A >1000
Initial	1:09	21.30	7.46	154.6	-21
Final (Smin)	1:14			138.2 5	
		1		->126.8	
Notes:					
* The filter used was a coffee filter.					
The litter used was a collee litter.					
• The control is a reference that can be	upod to para				
The control is a reference that can be There were no products tested in the c		oare the results fr	om the prod	ducts that were tested.	
		······			

i

Test #1 Sheet ____ of ____

ANNNE ANNNE ANNNE ANNNE ANNNE ANNNE ANNNE ANNNE ANNNE ANNNE ANNNE	SOLA NOTTATIO		T	est # 2		ASSOCIATES Responsive partner. Exceptional outcomes.
		6			ate Field Analys	
	-4241	0			emplin (Wenck)	
site:	7/21/1 f. Croix				Sigtermans (Wen-	ck)
				Other		
Product	Tested: Floc 06	(Innovative Tur	f Solutions)		Significant Re	eaction? (Y) N
Mixing N	fethod: <u>Rapid N</u>	lix (Shaking)			Reduction to	
Sample Para	meters:				>1000	(text), * See control Notes
Rea	ıding	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NT	Post-filter
Initial ((Control)	1:09	21.30	7.46	1545	
Fi	nal	1:41	20.10	5.69	19.57	3.463
Dosing Table	:	1				
r	Time (clock):	1:25				
Time (min)	Dose Ac (Spoon -		nulative Dosage Spoon - Drop)	Pre-filter Turbidi	ty (NTU)	
0	1		1			
1			_2			
'2			3	30.35	(7	min)
7			4		/	N
<u> </u>			5	19,57	(13	o unin)
Notes:						
* The filter used	d was a coffee fil	ter.				
Visible	flocs af	ter 3rd	dry added	- some	Floating /	buoyancy neutral
AGer 51	th drop,	flocs lar		foating floc	ا کہ	-
Filter c	logged vi	ing guick	Ч		1	
Mixing Guidan	ce:	-				
		oon) to sample b	ottle, close lid, and s	shake for 5 seconds.	. Let sit to react	for remainder
				test the turbidity (A		

[eg+# 2 Sheet _ _ _ of _ ___

Test # 3

Responsive partner. Exceptional outcomes.

Product 7	lethod: <u>Rapid N</u>	V-AO (Standa)	rd Contracting)	Kirby-	Ate Field Analyst(s) Femplin (Wenck) Sigtermans (Wenck) ronr (Wenck) Significant Reaction Reduction to < 50 1000	ion?
-	ding	Time	Temp	pH	Pre-filter	Post-filter
	Control)	(clock)	(°C)	7.46	Turbidity (NTU)	Turbidity (NTU)*
	nal	2:02	21.30	5.69	28,95	20.32
Dosing Table:	Time (clock):	1 5 4 5 1	20.56	7.28		
Time	Dose A		Cumulative Dosade	Due filtere Tradicio		
(min)	(Spoon -		(Spoon - Drop)	Pre-filter Turbid		
Č .						
×1 2			1			
3	2			41.45	5 (8,	$\sim 10^{-10}$
8.5	2		<u>۲</u>	28,95		nin) 5 min)
			•)
Notes:						
* The filter use	d was a coffee f	ilter.				
Flocs More Filler (appeared 8 small Clogged N	after ! er floc wolerafei	0	pops. Minin	nal floating	flocs
Mixing Guidar	ıce:					······
Add 1 Duan (A	Jon au wann an h Cu	a a a b a a man	le bettle eleccied and	abolis for E second		warman landa w

• Add 1 Drop (Measurement Spoon) to sample bottle, close lid, and shake for 5 seconds. Let sit to react for remainder

of 30 seconds. If reaction is noticed, wait remainder of 5 minutes to test the turbidity (Allows floc to settle). Repeat

until desired results.

(

(

Test # 4

Date: 7/21/16 Site: St. Croix			Louis S	emplin (Wenck)
Product Tested: <u>Earth P</u> Mixing Method: <u>Rapid N</u>		Farth and Road)		Significant Reaction? Y N Reduction to < 50 NTU? Y N
Sample Parameters:			F	>1000 # see control Notes
Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU) Turbidity (NTU)*
Initial (Control) Final	1:09	21.30	7.46	12476 17.63 74.51
Dosing Table: Starting Time (clock): Time Dose Ad (min) (Spoon - O (1 1 2 1 3 2 4.5 1 fa 10.5 1 fa	ded Cu Drop) (mulative Dosage Spoon - Drop) [2 2 3 5 5 2 [3]	Pre-filter Tur (NTU) 98,04 97.6	1 (9.5 min) [suspect needings.
Mixing Guidance:	addition	nder of 5 minutes to	shake for 5 second	ds. Let sit to react for remainder (Allows floc to settle). Repeat

Test # 5

Responsive partner. Exceptional outcomes.

Terf #5 Sheet _ of _

	7/21/16			Indicate Field Analyst(s):					
Date:	7/21/16 t. Croix			and the second	emplin (Wenck)				
	+ Cons	v			igtermans (Wenck)				
Site: 0	i, croix	•		_leff-Str					
				Other					
Product 1	Fested: Liquiflo	c 1% (Dober)		Significant Reacti	on? Y N			
Mixing M	lethod: <u>Slow M</u> i	ix (Stirring)			Reduction to < 50	<u>) NTU? (Y) N</u>			
Sample Parar	neters:				>1000	#See Control notes			
Rea	ading Time Temp (clock) (°C)			рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*			
Initial (Control)	1:09	21.30	7.46	DAK6				
Fi	nal	2:51	22.10	7,26	22.34	12.28			
Dosing Table: Starting	Time (clock):	2:31							
Time (min)	Dose Ac (Drop		Cumulative Dosage (Drop)	Pre-filter Turbidi	ty (NTU)				
0	(210)	.,	(
0.5	1		7						
1	ì		3						
1.5			4						
2	I		5	41.8	5 (7,	min)			
٣٦	1		6			/			
8	2		8	23.18	(Bn	nin)			
14	2		10	22.3	4 (19	min) min)			
Notes: * The filter use	d was a coffee fi	ilter.				, 			
Filter C	(ickly						
	· · · · · · · · · · · · · · · · · · ·								
Mixing Guidar	ice:					<u>_</u>			

• Add 1 drop and stir for 5 seconds. Let sit to react for remainder of 1 minute. If no reaction is noticed, repeat.

If reaction is noticed, wait remainder of 5 minutes to test the turbidity (Allows floc to settle). Repeat until desired results.

(

	Indi								Indicat	Indicate Field Analyst(s):					
Date:	1/21	/16							Kirby-To	emplin (We	enck)				
	6	1						(Louis Si	gtermans	(Wenck)	\mathcal{D}			
Site:	÷,	Croj	x					-	Jeff-Stro	əm (Wenc	()				
									Other						
Product	Tested:	Dual Pa	rt System (I	DPS) L	B210	1 and L	iquiflo	oc 1%_		Significa	nt Reac	tion	?	Y N	
		(Dober))											6	
Mixing N	Mixing Method: <u>Rapid Mix - LB2101 (Shaking)</u> Slow Mix - Liquifloc 1% (Stirring)									Reductio	on to < 5	50 N	TU?	(Y) N	
		SIOW MI	x - Liquinoc	170 (3	burning	9)							11	est 1)	
Sample Para	meters:									>101)0 #	5	e co	1 lorto	voles
Per	ading		Time			Temp		pН		Pre-	filter		Post-	-filter	
			(clock)	0:	(°C)				Turbidi	ty (NTU)		furbidity	y (NTU)*	
	(Contro)	1:09			.30		7.4b		69.	6				
Fi	inal		3:13		22	81		7,07		33	,90		24	<u></u>	
Dosing Table		<i></i>	~ ()												
Start Time ((clock):	23	59	_		Step 1	Table:								
Time (min)	Step		e-filter lity (NTU)			Step		.01 Added Drops)	Â	floc 1% Ided rops)		nula osag prop	je		
0	1					1		1		1	1	/			
1	2					2		2		1	3	1	2		
2	3	6	3.68	1-7.	nin)	3		2		2	5	/	4		
8	4	4	1.28		min	4		3		2	8	1	6		
14	5	20	3.90	119		5		3		3	11	1	9		
			2. (0	1.		6		4		3	15	1	12		
						7		4		4	19	. 1	16		
					ł	8		5		4	24	1	20		
	1			I	Į	Cumu	lative	Dosage: L	B2101	/ Liquiflo	c 1%			ł	
Notes:															<u>,</u>
* The filter use	C_{i} 1			alco	<u>.</u>	1									•
Jone	that	ny -	Flocs	0550	100	<u>q</u>									1
													. <u> </u>		<u>,</u>
															,
															,
Mixing Guida			uubiok to t	्रतत १	duca	10010	1	chalka for F		and them		on !	iquiflee 4	104 and	•
• Start mixing															
stir for 5 secor															
noticed, wait n	emainde	or 5 m	mutes to tes		uity (.	Allows	HOC TO	seule), ke	Jeat tor	next mixir	ig step u				
Sheets and guida	ance deve	loped thr	ough field tes	ting of	produ	cts		H-25					Test	#6 _{Shee}	et of

6 PARTMENT OF TH	AND RATIONALOS		Ţ	est # 7			VENCK Associates Responsive partner. xceptional outcomes.			
				Indica	nte Field Analys					
Date:	7/21/10	0		Kirby T	emplin (Wenek)					
c				Louis Sigtermans (Wenck)						
Site: C	H. (101	X		Jeff-Strom-(Wenck)>						
				Other						
Product	Tested: <u>Biostar</u>	-CH 2% (Hild	and Associates)		Significant Re	eaction?	<u>N</u>			
Mixing N	fethod: <u>Slow Mi</u>	ix (Stirring)			Reduction to	< 50 NTU?	<u>N</u>			
Sample Para	meters:				>1000	* See contro	1). 1 Auter			
Rea	ding	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NT	Post-filter	1*			
Initial ((Control)	1:09	21.30	7.46	DHSG					
Fi	nal	3:36	22,89	7.25	21.69	14.38				
Dosing Table Starting	: Time (clock):	3:17		• • • • • • • • • • • • • • • • • • •	t					
Time (min)	Dose Ad		Cumulative Dosage (Drop)	Pre-filter Turbidi	ty (NTU)					
0	1)							
0.5	1		2							
P	1		3.		_					
1.5)		Ч	52.10) ((o.5 min)				
7			5			,				
7.5	(6	26.76	ن ا) ا	2.5 min)				
13	2		8	21,60	1 (1	5.5 min) 2.5 min) 8 min)				
Notes:										
	d was a coffee fil	A .								
Flocs b	rigger after	r 6 dro	·()							
<u>.</u>										
Mixing Guidan	ce:									

• Add 1 drop and stir for 5 seconds. Let sit to react for remainder of 30 seconds. If no reaction is noticed, repeat.

If reaction is noticed, wait remainder of 5 minutes to test the turbidity (Allows floc to settle). Repeat until desired results.

(

Test#7sheet____of___

C PARTMENT OF TH	AND BOOM		Associates Responsive partner, Exceptional outcomes.			
		(Indica	ite Field Analyst(s):
Date:	7/21/1 t. Coi	6		<u>Kirby T</u>	emplin (Wenck)	
2	+ Coni	J			igtermans (Wenck)	>
Site:		<u>×</u>			om-(Wenck)	
Product	Tested: <u>APL B</u>	ridger (Hild and A	ssociates)	Other	Significant React	tion? (YN?
Mixing M	ethod: Slow N	lix (Stirring)		· · · · · · · · · · · · · · · · · · ·	<u>Reduction to < 5</u>	
Sample Parar	meters:		-		>1000	test is the fittening
Rea	nding	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial ((Control)	1:09	21.30	7.46	139.6	
Fi	nal	4:13	20,80	7.38	58.92	41.31
Dosing Table: Starting Time	: Time (clock): Dose A					
(min)	Dose A (Dro		mulative Dosage (Drop)	Pre-filter Turbidi	ty (NTU)	
0			(
0.5	7	1	2			
			3		- 1	·
1.5			4	62.90	1 (6.)	(min)
75			<u> </u>			
8	<u> </u>		- 10 - 7			
8.5	1		8	58,92	(13.5	5 min)
Notes:						/
* The filter used			Callela L. C.		1 1	
Very sn	1 1	k them	settled, fil easily	ocs are do	imped hight	ty, stiring
aols	hot brea	e men	eaging			
	7.65.4			n	1997 (A) (1997 (A)	
Mixing Guidan	ice:					······································
• Add 1 drop an	d stir for 5 seco	onds. Let sit to re	act for remainder o	f 30 seconds. If no re	eaction is noticed, re	epeat.
				lity (Allows floc to se		
		ough field testing o		H-27		Test # Sheet of _

Test # 9

	- in lu				Indicate Field Analyst(s):					
Date:	1/21/16				Kirby Templin (Wenck)					
		n.			Louis	Sigtermans (Wenck))			
Site:	St. Croi	IX			Jeff S	trom (Wenck)-				
					Other					
Product	Tested: Biostar-	CH (first) then AP	L Bridger (seco	nd)		Significant Reacti	on? (Y) N			
	(Hild and	d Associates)								
Mixing M	lethod: <u>Slow Mix</u>	(Stirring)				Reduction to < 50				
Sample Para	meters:	· · · · · · · · · · · · · · · · · · ·	1			>1000 *	See control nots			
Re	Reading Time Temp (clock) (°C)				эΗ	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*			
Initial	(Control)	1:09	21.30	7.41	9	154.6				
F	inal	4:31	23.29	7.2	9	20,68	11.00			
Dosing Table: Starting Time (clock): 4:17										
Time (min)	Product Code (A or B)	Dose Adde (Drop)		ative Dosage (Drop)	e Pro	e-filter Turbidity (NTU)				
0	B	1								
0.5	A	1		1 2						
.1	B	ļ		2 3		· · · · · · · · · · · · · · · · · · ·				
1.5	A			2 4		47.19	(6.5 min)			
7	B	ľ		3 5 3 6						
7.5	A	1		36						
8	B	(47						
8,5	A			4 8		20.68	(13,5 min)			
Product Code	: A = APL Bridge	er, B = Biostar-	CH 2%				(
Notes:										
	d was a coffee filt	er.								
Mixing Guidar	ıce:									
• Add 1 drop Bi	ostar-CH and stir	for 5 seconds. Le	t sit to react fo	r remainder o	f 30 seco	onds. Add 1 drop APL E	Bridger and stir			
for 5 seconds. L	et sit to react for	remainder of 30	seconds. If no	reaction is not	iced, rep	eat. ONLY TAKE TURB	IDITY READING			
IF BOTH BIOST	AR-CH AND APL E	RIDGER HAVE BI	EEN ADDED, AN	ID IF THERE I	S A REAC	CTION. If reaction is no	oticed, wait			
remainder of 5	minutes to test th	e turbidity (Allow	s floc to settle)	. Repeat until	desired	results.				

Test # 9 Sheet ____ of ____

Test # 10

Responsive partner. Exceptional outcomes.

Test # 10 sheet ____ of ____

					Indicate Field Analyst(s):					
Date:	7/21/16 St. Croi				-	Kirby T	emplin (Wene k)			
						Louis S	igtermans (Wenck)	>		
Site:	st. Croi	Κ				Jeff-Str	em (Wenck)			
					Other					
								~		
Product	Tested: APL Brid	ger (first) then Bi	iostar-(CH (second)			Significant Reaction	<u>on? (Y) N</u>		
	(Hild and	d Associates)								
Mixing I	Method: <u>Slow Mix</u>	(Stirring)					Reduction to < 50			
							2	(test1)		
Sample Para	meters:						2 10 V	see control notes		
Re	ading	Time (clock)		Temp (°C)	pН		Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*		
Initial	(Control)	1:09	21	.30	7.40	,	139.6			
F	inal	4:47	23	3.31	7.21		23.70	9.688		
Dosing Table	•			<u> </u>			<u> </u>			
Sta	rt Time (clock):	4:33								
Time (min)	Product Code (A or B)	Dose Adde (Drop)	d	Cumulative (Dro	- 1	Pre	-filter Turbidity (NTU)			
0	A	. ()	l					
0,5	B	1		ì	2					
l l	A	Î		2	. 3					
1.5	B	1		2	- 4			(b,5 min)		
1	A	l		3	5					
7.5	B	1		3	6					
8	A	1		4	7					
8.5	B	1		4	B	2	23.70	(13.5 min)		
Product Code	: A = APL Bridge	er, B = Biostar-O	CH 2%	•						
Notes:	·									
* The filter use	d was a coffee filte	er.								
								·		
Mixing Guidar										
							ds. Add 1 drop Biosta			
							it. ONLY TAKE TURBI			
							ION. If reaction is not	ticed, wait		
remainder of 5	minutes to test th	e turbidity (Allow	s floc t	o settle). Rep	eat until de	sired res	sults.			

Test # 11

Date: 7/21/16				cate Field Analyst(s):				
Date:				Kirby Templin (Wenck)				
Date: $7/21/16$ Site: St. Crotx	<i>,</i>			s Sigtermans (Wenck)				
				Strom (Wenck)				
			<u>Othe</u>	r				
Product Tested: <u>APS 703</u>	d#3 Floc Log (Ap	plied Polymer Syste	ems, Inc.)	Significant Reaction? Y N				
Mixing Method: Slow Mix	(Stirring)			Reduction to < 50 NTU? Y $\left(N\right)$				
Sample Parameters:	- -			>1000 * see control notes				
Reading	Time (clock)	Temp (°C)	рН	Pre-filter Post-filter Turbidity (NTU) Turbidity (NTU)*				
Initial (Control)	1:09	21.30	7.46	1546				
Final	5:16	23.19	7.21	138.4 123.4				
Time (min) Pre-filter Tu (NTU) 5 [47, 0] 10 [44, 1] Stir for 30 seconds 15 [38, 4]	irbidity)	Turbidity Susp	ect.	prot be accumik.				
Notes: <u>* The filter used was a coffee filt</u>	er.							
Log still uisible	after 15	i min						
Mixing Guidance: • Add 1/2 pencil size eraser piece	e that fits in a dro	op size measuremen	it spoon. Stir for :	1 minute and let sit for remainder of 5				
minutes. Test turbidity at the 5 r	ninute and 10 mi	nute times. Stir for	30 seconds after	10 minute time. Test turbidity at the 15				
minute time.								
Sheets and guidance developed throu	igh field testing of (products	H-30	Test #11 Sheet of				

Test # 12

Date: 7/21/16				icate Field Analyst(s):
				y Templin (Wenck). s Sigtermans (Wenck)
site: St, Cro	ix		9	
	<u> </u>			Strom (Wenck)
			<u>Othe</u>	er
Product Tested: APS 706	b Floc Log (Appli	ed Polymer System	s, Inc.)	Significant Reaction? Y
Mixing Method: Slow Mix	(Stirring)			<u>Reduction to < 50 NTU? Y $\left(N\right)$</u>
Sample Parameters:				>1000 * See control notes
Reading	Time (clock)	Temp (°C)	рН	Pre-filter Post-filter Turbidity (NTU) Turbidity (NTU)*
Initial (Control)	1:09	21,30	7.46	BTG.
Final	5:18	23.16	7.28	139.1 121.0
Dosing Table:	· · · · · · · · · · · · · · · · · · ·			
Starting Time (clock): Time (min) Pre-filter Tu (NTU) 5 149.1 10 146.8 Stir for 30 seconds 15 139.1	irbidity	Turbidit Suspect	nendry' May	rothe accurate.
Notes:				
* The filter used was a coffee filte	er.			
Log still visible af	ter 15 mi	h		
Mixing Guidance:	· · · · · · · · · · · · · · · · · · ·			
				minute and let sit for remainder of 5
minutes. Test turbidity at the 5 m	inute and 10 mir	nute times. Stir for :	30 seconds after :	10 minute time. Test turbidity at the 15
minute time.				

Telt # Usheet ____ of]

Responsive partner. Exceptional outcomes.

Date: 7/21/16 Site: St. Croix				Indicate Field Analyst(s):		
				Kirby-Templin (Wenck)		
sites St Con	24			lis Sigtermans (Wenck)		
	1×		leff	Strom (Wenck)		
			Oth	er		
Product Tested: <u>APS 70.</u> (Applied Mixing Method: <u>Slow Mi</u>	l Polymer System		aneously)	Significant Reaction? Y $\left(\begin{array}{c} N \end{array} \right)$ Reduction to < 50 NTU? Y $\left(\begin{array}{c} N \end{array} \right)$		
Sample Parameters:	T			>1000 * cer control hotes		
Reading	Time (clock)	Temp (°C)	pН	Pre-filter Turbidity (NTU) Turbidity (NTU)*		
Initial (Control)	1:09	21.30	7.46	Turbidity (NTU) Turbidity (NTU)*		
Final	5:20	23.25	7.13	123.2 (03.9		
Dosing Table:		07:05	[1]>	123.2 103.9		
Starting Time (clock): Time Pre-filter Tr (min) (NTU 5 149, 7 10 143, 7 Stir for 30 seconds 15 23, 7 	urbidity) 2 3	Tur bid susp	ity new	my not be accurate.		
Notes: * The filter used was a coffee filter Log Sfill visible	<u>()</u>	щіл.				
Mixing Guidance:						
Add 1/2 pencil size eraser piece	that fits in a drop	p size measurement	spoon for both p	products simultaneously. Stir for 1 minute		
and let sit for remainder of 5 min	utes. Test turbidit	y at the 5 minute a	<u>nd 10 minute tim</u>	nes. Stir for 30 seconds after 10 minute		
time. Test turbidity at the 15 min	ute time.					

Teyt #13 ____ of ____

Dwayne Stenlund and Bruce Holdhusen Minnesota Department of Transportation March 3, 2017

Attachment C

Sample 2 (From a discharge hose at a Hwy 53 construction site in northern MN)

Test Checklist

Responsive partner. Exceptional outcomes.

Date:	313116	Field Analyst(s): Kirby Templin (Wenck Associates, Inc.)
Site:	53	Other Charles F.
		BB. Dwyne stenlind

		Product Test List	
Test a	F Test Completed	Product Name	Manufacturer
1	X	Control	-
2	X	Floc 06	Innovative Turf Solutions
3	X	SCI-CW-A0	Standard Contracting
4	X	Earth Poly-Stable Plus	Earth and Road
5	×	Liquifloc 1%	Dober
6	X.	LB2101 (first) then Liquifloc 1% (second)	Dober
7	X	Biostar-CH 2%	Hild and Associates
8	×	APL Bridger	Hild and Associates
9	×	Biostar-CH (first) then APL Bridger (second)	Hild and Associates
10	X	APL Bridger (first) then Biostar-CH (second)	Hild and Associates
11	X	APS 703d#3 Floc Log	Applied Polymer Systems, Inc
12	×	APS 706b Floc Log	Applied Polymer Systems, Inc
13	X	APS 703d#3 Floc Log and 706b Floc Log (simultaneously)	Applied Polymer Systems, Inc

Measurement Spoon	Equivalent Measurement	Volume Equivalent (fl oz)	Volume Equivalent (mL)
Drop	1/64 Teaspoon (1/2 Smidgen)	0.002604	0.07701
Smidgen	1/32 Teaspoon (1/2 Pinch)	0.005208	0.1540
Pinch 1/16 Teaspoon (1/2 Dash)		0.01042	0.3081
Dash	1/8 Teaspoon (1/2 Tad)	0.02083	0.6161
Tad	1/4 Teaspoon	0.04167	1.232

Sheets and guidance developed through field testing of products

e* /	CONTINUESON TOLELA		Test #	Fi	-	alyst(s):	ASSOCIATES Responsive partner. Exceptional outcomes	
	Date: 0777			Le le	Julis Sig	nplin (Wenck Associa termans (Wenck Ass n (Wenck Associates	ociates, Inc.)>	-
	Product Tested: Control			-		Significant Reaction	au? Y N	* retained with
	Mixing Method: No Mixing Method			-		Reduction to < 50	NTU? Y N	Fourth enco
	Sample Parameters:			1	7.0	1202	for right	grander Jan
	Reading	Time	Temp (°C)	(F	оН	Bre-filter Terbidity (NTU)	Post-filter Turbidity (NTU)*	2100
	Initial	8:47	22.3	đ	100	galler		
	Final	8.28				R. H. Contraction	103.5	
(3.50pm	Notes: * The filter used was a coffee filter. *APhr all Test une co	0 7	n. Turb		/		>1600	tots ditate SOZ Supta Supta Supta Supta Supta Supta Supta Supta Supta Supta
	The control is a reference that can be i		re the results f	rom th	ne produ	ucts that were tested		
-	There were no products tested in the c	ontrol.						2

2 	A DE TRANS	OFTATION		May be red and Iron	sarph foget lab NTU Nu Ma reading. WENCK ASSOCIATES
	Date: Site:	6/3/16 5-3	e Turf Solutions)	Jeff Strom (Wen Other Dru P	Responsive partner. Exceptional outcomes. Analyst(s): Menck Associates, Inc.) S (Wenck Associates, Inc.) Ex Associates, Inc.)
		d: <u>Rapid Mix (Shaking</u>)		1000 rectact with the fines and
	Sample Paramete Reading Initial (Cont Final Dosing Table:	rol) $4, 41$) (°C) 22.3	pH 7.04 Pre Turbid	-filter ity (NW) Post-filter Turbidity (NTU)*
	Starting Time (min) C.3 C.3 C.5	Clock): <u>1</u>	/ Cumulative Dosage (Spoon - Drop)	Pre-filter Turbidity (NTU)	168.9 Not surrendy reading high. was definitly flocing ad show I dhe Iower Then initian
350pm	Notes: * The filter used was * After all	1 1 1 1	pletay the h	rbidity was v	* retested initial with differt Metradget >1000 as initial. measured at 6.056
	of 30 seconds. If rea until desired results.		emainder of 5 minutes to	shake for 5 seconds. Let sit test the turbidity (Allows fl	

H-36

(ARTININA OF TRANSPORT	Tes	st # 3	ASSOCIATES Responsive partner. Exceptional outcomes.
	Date: <u>8/3/16</u> Site: <u>53</u> Product Tested: <u>SCI-CW-A0 (Standar</u>	d Contracting)	Kirby Te Louis St Jeff Stro Other	EField Analyst(s): mplin (Wenck Associates, Inc.) The Menck Associates, Inc.) Menck Associates, Inc.) Drugne Sterlut Rebecca Adduce Significant Reaction?
	Mixing Method: <u>Rapid Mix (Shaking)</u>			Reduction to < 50 NTU? Y
	Sample Parameters: Reading Time (clock) Initial (Control) 8:47 Final	Temp (°C) 22.3 23.9	рн 7,04 7,40	Pre-filter Turbidity (NTU)Post-filter Turbidity (NTU)*> 1000
(Dosing Table: Starting Time (clock): 9.36		Pre-filter Turb (NTU) 19.4.8 (62. 90.5 72.7	Suspect rendings
	Notes: * The filter used was a coffee filter. * A PL all HSI were Con Mixing Guidance: • Add 1 Drop (Measurement Spoon) to samp of 30 seconds. If reaction is noticed, wait re until desired results.	ole bottle, close lid, and	I shake for 5 second	
				Test #3 Sheet of

H-37

COMMINNE SPARTMENT OF T	RANON PLOS		_⊁ ∧ Te	to it st # 4	WENCK MGPL V ni Form. WENCK ASSOCIATES Responsive partner. Exceptional outcomes.
Date: Site:	8/3/ 53	16		- Kirby T	inte Field Analyst(s): implie (Wenck Associates, Inc.) interments (Wenck Associates, Inc.) interments (Wenck Associates, Inc.) Duryn (Jeslud Refield Analyst(s):
Product	Tested: Earth I	Poly-Stable Plu	s (Earth and Road)		Significant Reaction? Y
Mixing N	fethod: Rapid	Mix (Shaking)			Reduction to < 50 NTU? Y
Sample Para	meters:				1
Rea	nding	Time (clock)	Temp (°C)	рН	Pre-filter Post-filter Turbidity (NTU) Turbidity (NTU)*
Initial ((Control)	8:47	97.3	7.04	71000
Fi	nal	10:43	2-4-4	7.23	180.5 180.4
Dosing Table Starting	: Time (clock):	10:1	2		
Time (min)	Dose A (Spoon -		Cumulative Dosage (Spoon - Drop)	Pre-filter Turl (NTU)	bidity S S S S S S S S S S S S S
5.5	1		Z	194.1 184-6	5 Jibid accordid rot tion
18-5		- 0	5 drap	184.9	mot sit and
24	ITAL	Sole	21 das	180.	5 No Luibie and 1000
			0 <u> </u>		to im T
					Na
Notes:	2 - 100				
1 A A	d was a coffee f	1	ted, Returbi	dity was m	uasund at 169.9.
		v		1	1
					Tipuly not real.
Mixing Guidar	ice:				
		oon) to sampl	e bottle, close lid, and	shake for 5 second	ls. Let sit to react for remainder
					(Allows floc to settle). Repeat
until desired res					
					1

3:50pm

100	NNE	SOL	2
m	7		20
PAF		×	E
3			E
ENT		ON	3
	UFT	HP	

Indicate Field Analyst(s):

Other

Kirby Templin (Wenck Associates, Inc.) Louis Sigtermans (Wenck Associates, Inc.)

Significant Reaction?

Reduction to < 50 NTU?

was theis

Relation

eff Strom (Wenck Associates, Inc.)

Responsive partner. Exceptional outcomes.

N

N

Date:	8/3/16	
	53	
Site:	0.0	

Product Tested: Liquifloc 1% (Dober)

Mixing Method: Slow Mix (Stirring)

Sample Parameters:

Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial (Control)	8:47	22.3	7.04	>1000	
Final	28.5	25.7	7-18	41.27	30.52

Dosing Table:

Starting Time (clock): ______0'50

Time (min)	Dose Added (Drop)	Cumulative Dosage (Drop)	Pre-filter Turbidity (NTU)	ł
0)			1. 6 3 VSpru"
1.5	<u>l</u>	Ś	174.0 -	> readings 3 vspraction
15	/	3	116.3	hourse have I
18		4	80.31	
13.5	1	6	41.27	
		0	1	

10mp

Notes:

AP

* The filter used was a coffee filter

3:50 pm *

Mixing Guidance:

Add 1 drop and stir for 5 seconds. Let sit to react for remainder of 1 minute. If no reaction is noticed, repeat.

If reaction is noticed, wait remainder of 5 minutes to test the turbidity (Allows floc to settle). Repeat until desired results.

at

Responsive partner. Exceptional outcomes.

N

Date:	8/3/16	
Site:	53	

Indicate Field Analyst(s):

Kicby Templin (Wenck Associates, Inc.)

Louis Sigtermans (Wenck Associates, Inc.)

Seff Strom (Wenck Associates, Inc.)

Significant Reaction?

Reduction to < 50 NTU?

Other

Product Tested: Dual Part System (DPS) LB2101 and Liquifloc 1%

(Dober)

Mixing Method: Rapid Mix - LB2101 (Shaking) Slow Mix - Liquifloc 1% (Stirring)

3:28

Sample Parameters:

Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial (Control)	8:47	22.3	7.04	>1000	Look to Look Te
Final	13:55	27.2	6.81	45.96	32.50

Dosing Table:

Start Time (clock):

Step Table:

Time (min)	Step	Pre-filter Turbidity (NTU)		Step	LB2101 Added (Drops)	Liquifloc 1% Added (Drops)	D	nula osa Drop	
0	1	no ne	actin	1	1	1	1	1	1
1.5	2	176.8	newby	2	2	1	3	1	2
\$7.2	3	126-1 /	SUSP	3	2	2	5	1	4
12-5	4	62.71	Words	4	3	2	8	/	6
17 18.0	5	45.96	really	5)	3	3	11	1	9
0.35		ŀ	105	6	4	3	15	1	12
			V	7	4	4	19	1	16
				8	5	4	24	1	20

Cumulative Dosage: LB2101 / Liquifloc 1%

Notes:

* The filter used was a coffee filter.

100 was measured at 28.01

Mixing Guidance:

• Start mixing ratio at step one which is to add 1 drop LB2101 and shake for 5 seconds and then add 1 drop Liquifloc 1% and stir for 5 seconds. Let sit to react for remainder of 1 minute. If no reaction is noticed, perform next mixing step. If reaction is noticed, wait remainder of 5 minutes to test turbidity (Allows floc to settle). Repeat for next mixing step until desired results.

Indicate Field Analyst(s):

K (by Ten)plin (Wenck Associates, Inc.)

Significant Reaction?

Reduction to < 50 NTU?

was measured

(eff Strom (Wenck Associates, Inc.)

Responsive partner. Exceptional outcomes.

Y) N

N

Date:	8/3/16	
	57	
Site:		

Product Tested: Biostar-CH 2% (Hild and Associates)

Mixing Method: Slow Mix (Stirring)

Sample Parameters:

Reading	Time (clock)	Temp (°C)	pH	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial (Control)	8:47	22.3	7.04	71000	
Final	14:40	27,9	6.73	35.18	24.83

Dosing Table:

Starting Time (clock):

Time (min)	Dose Added (Drop)	Cumulative Dosage (Drop)	Pre-filter Turbidity (NTU)	wit
0	١	1	A BOOM	Jus sugar
0.5	l	2	HERE PO). O MARY Lin
6.0	1	3	102	O I Thiling.
11.0		4	71.78	how or I
17.0		5	50:26	
23.5		6	35.18	

Notes:

50pm * After 3:

* The filter used was a coffee filter. turbidit al were completed

Mixing Guidance:

• Add 1 drop and stir for 5 seconds. Let sit to react for remainder of 30 seconds. If no reaction is noticed, repeat.

If reaction is noticed, wait remainder of 5 minutes to test the turbidity (Allows floc to settle). Repeat until desired results.

at 17,11

CANINNESS OF TR	OPTATION 410		Te	st # 8		ASSOCIATES Responsive partner. Exceptional outcomes.
Date: Site:	6/3/16 53	Å		Kirby	rom (Wenck Asso	t (s): ssociates, Inc.)
	ested: <u>APL Bridger (1</u> ethod: <u>Slow Mix (Stir</u>		tes)		Significant Rea	
Sample Paran Read Initial (G	ling (c	. 16.	тетр (°С) 22.3	рН 7.04	>1000	Post-filter U) Turbidity (NTU)*
Dosing Table:	Fime (clock):	Cumulat (C	- ive Dosage prop)	Pre-filter Tur (NTU)	bidity -	125-7 Terredu my rot be
6 11.5 12.5 18			12	199.0 176,7 145.0		These ready my not be accurate. The served with accurate man time to be accurate floc and impound turbidide was noticed but not impl was noticed but not impl yo barget level.
Notes: * The filter used	was a coffee filter.	e condet	8 	134,2	wos meas	Ô I I
			· · / Ju	10000017		
	e: I stir for 5 seconds. L iced, wait remainder (

Sheets and guidance developed through field testing of products

		SPARTMENT OF T	RANSPORTATION		Tes	it # 9		e	ASSOCIAT Responsive par Exceptional outc	ES
			813	116			Indica	te Field Analyst(s		
		Date:	- 0/1	1~			Kirby T	emplin (Wenck Asso	ociates, Inc.)	
			5	3				ligtermans (Wenck A		
		Site:	5	~			Jeft Str	rom (Wenck Associat	tes, Inc.)	
				l Associates)	- Bridger (second)		_Other_	Significant React	C	
		Mixing	Method: Slow Mix	(Stirring)				Reduction to < 5	NTU? YN	
		Sample Para	ameters:	Time						
		Re	eading	(clock)	Temp (°C)	pH	ł	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*	
		Initial	(Control)	8:47	27.3	7.0	4	>1000	The Ma	
			Final	15:32	38.2	6-1	50	31.54	21.46	
	- 1	Dosing Table	e: ng Time (clock):	15:03						Ŀ
(TCS	Time (min)	Product Code (A or B)	Dose Added (Drop)	Cumulative (Dro		Pre	-filter Turbidity (NTU)	- Neuting 5356	rehm
		0	ß	(·P7		(110)	175	arting.
		0.5	A	ſ	3			169.9 -	- New with a	, our /
	[6.5	B	١	7			101.7	Van Nan	x
	12	7.0	Ă	1	Ч			71.29		
	2	12.5	13	1	4			112-1		
	3	13.0	A	1	6			4121		
	Y	19.5	ß	i	7	P		<u> </u>		
ł		20.0	A	1	8			31,54		
1		Product Code	e: A = APL Bridge	er, B = Biostar-O	CH 2%		di			
		Notes:								
		* The filter use	ed was a coffee filt	er.						
3.	50pm	# APL	rall sty	where co	moleted, 7	r. Ark	sid:	by was me	cosundat 29	.09
	1			v	0 /			/		
							95.		-	
		Mixing Guida	nce:							
		• Add 1 drop E	Biostar-CH and stir	for 5 seconds. Le	t sit to react for re	mainder of	f 30 seco	onds. Add 1 drop API	Bridger and stir	
								eat. ONLY TAKE TU		
								CTION. If reaction is		
					s floc to settle). Re					
		Sheets and guida	nce developed throu	gh field testing of pr	oducts			1	est #9 Sheet of	

Indicate Field Analyst(s):

Kirby Templin (Wenck Associates, Inc.) Louis Siglermans (Wenck Associates, Inc.) Jeff Strom (Wenck Associates, Inc.)

Significant Reaction?

Reduction to < 50 NTU?

Responsive partner. Exceptional outcomes.

Date:	8/3/16		
Site:	53	¥.	
	21		

Product Tested: APL Bridger (first) then Biostar-CH (second)

(Hild and Associates)

Mixing Method: Slow Mix (Stirring)

Sample Parameters:

Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial (Control)	8:47	22.3	7.04	>1000	And the second second
Final	3:30	28.3	6.73	32.97	19.46

Dosing Table	Final a: rt Time (clock):	3.01	-28.5 6.7.	5 52,47	19.96 NTU
Time (min)	Product Code (A or B)	Dose Added (Drop)	Cumulative Dosage (Drop)	Pre-filter Turbidity (NTU)	1710 color
0	A	1	l		a culfund vor
0.5	B	ļ	2	188.3 -	heady march
7 40	R	<u>l</u>		(11,0	> Markey Supractic was and
125	Â	1	45	11(70	-
13	B	ĺ	6	50.10	
18.5	A	1	7		
19	B		8	32.97	

Product Code: A = APL Bridger, B = Biostar-CH 2%

Notes:

* The filter used was a coffee filter.

3:50pm * After where 10 mpletal The two idits leit was measured

Mixing Guidance:

Add 1 drop APL Bridger and stir for 5 seconds. Let sit to react for remainder of 30 seconds. Add 1 drop Biostar-CH and stir

for 5 seconds. Let sit to react for remainder of 30 seconds. If no reaction is noticed, repeat. ONLY TAKE TURBIDITY READING

IF BOTH BIOSTAR-CH AND APL BRIDGER HAVE BEEN ADDED, AND IF THERE IS A REACTION. If reaction is noticed, wait

remainder of 5 minutes to test the turbidity (Allows floc to settle). Repeat until desired results.

Test #10 Sheet

25.49

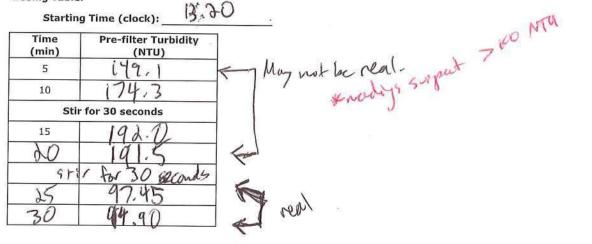
~* {	SPARTINE SOLA NOTELEO	Test	: # 11	WENCK Associates Responsive partner. Exceptional outcomes.
	Date: 8/3/ Site: 53	16	Kirby T Louis L Jeff Str	remplin (Wenck Associates, Inc.)
	Product Tested: APS 70:	3d#3 Floc Log (Applied Polymer Syste	Other	Durge Sterbad Resecca for mon Significant Reaction? Y (1)
	Mixing Method: Slow Mi	x (Stirring)		Reduction to < 50 NTU? Y
	Sample Parameters:			
	Reading Initial (Control)	$\begin{array}{c c} Time & Temp \\ (clock) & (^{\circ}C) \\ \hline 8:47 & JJ.3 \\ \end{array}$	рН 7.04	Pre-filter Turbidity (NTU) Turbidity (NTU)*
	Final	11:55 25.6	6.50	152-2 132.8
	Dosing Table: Starting Time (clock):	(1:13		
(Time (min) Pre-filter T (NTL) 5 000, 10 30, Stir for 30 second	9 <u>6</u> 7 <u>5</u> [.)u	thely not	eal Liby Neu?
	20 207	6 2 1.7	nyntn	
	55 1540 30 152.	decul		There real met a com
	Notes:			
3:50pm	* The filter used was a coffee fi * After all tests		rbidity un	1 measured at \$7.15
	Mixing Guidenee			
	• Add 1/2 pencil size eraser pie	ce that fits in a drop size measureme	nt spoon. Stir for 1	t minute and let sit for remainder of 5
				10 minute time. Test turbidity at the 15
	minute time.		terred street	

MINNESOLA				
A DIELANSO DE TRANSO	Test	: # 12		WENCK
VT OF TRANS				Responsive partner. Exceptional outcomes.
Glalu		Indica	te Field Analyst(s):	
Date:D/7/16		Kirby 1	Templin (Wenck Associa	tes, Inc.)
53		Louis	Sigtermans (Wenck Asso	ociates, Inc.)
Site:	·		rom (Wenck Associates,	
		Other	Burayne Ske	
Product Tested: APS 706b Floc Log (App	liad Polymar System	Incl	Rebécca \$	nemos
Froduct rested. Ars 7000 Hot Log (App	ied Folymer Systems	5, IIIC.)	Significant Reaction	I Y N
Mixing Method: Slow Mix (Stirring)			Reduction to < 50 N	
Sample Parameters:			1	
Reading Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU) T	Post-filter urbidity (NTU)*
Initial (Control) 8:47	29.3	7.04	5001 <	
Final	\$6.1	6.81	207.4	206.0
Dosing Table:				
Starting Time (clock):				
Time Pre-filter Turbidity (min) (NTU)				
5 105.5	ihl lihl	i not no	al	
10 (11.7	linh L	y not re	-	
Stir for 30 seconds	1.17	1		F
15 63.6			1 they	Fund
20 164.7			P Sort	MAN.
Stir For 30 seconds			tore	r i
25 203.7				
30 201.9		L		
Notes:				
* The filter used was a coffee filter. * After all lests were co	white, the	turbidity	ins measured	at me
A HARA WILLES II WORE CO	inpart in the	Westerry	c. rajour	1. 200.7
8				<u> </u>
25				They not neal,
Mixing Guidance:				/
• Add 1/2 pencil size eraser piece that fits in a d	rop size measureme	nt spoon. Stir for 1	l minute and let sit for i	remainder of 5
minutes. Test turbidity at the 5 minute and 10 m	ninute times. Stir for	30 seconds after	10 minute time. Test tu	rbidity at the 15
minute time.				

ľ,

3:50pm

Responsive partner. Exceptional outcomes.


Date: 8-3-16	Indicate Field Analyst(s):
53	Kirby Templin Wenck Associates,
Site:	Jeff Strom (Weack Associates, Inc.
Product Tested: APS 703d#3 and APS 706b Floc Log (simulta	aneously) Significant Reaction?
(Applied Polymer Systems, Inc.)	
Mixing Method: Slow Mix (Stirring)	Reduction to < 50 NTU?

Kirby Templin (Wenck Associates, Inc.)	
ouis Sigtermans (Wenck Associates, Inc.)	
eff Strom (Weack Associates, Inc.)	
Ather	
-	2

Sample Parameters:

Reading	Time (clock)	Temp (°C)	pН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial (Control)	8:47	29.3	7.04	>1000	A COLUMN STREET
Final	13:52	28.31	6.54	94.90	62.96

Dosing Table:

Notes:

* The filter used was a coffee filter.

3:50 gm mere 59 con mensmed was at

Mixing Guidance:

• Add 1/2 pencil size eraser piece that fits in a drop size measurement spoon for both products simultaneously. Stir for 1 minute and let sit for remainder of 5 minutes. Test turbidity at the 5 minute and 10 minute times. Stir for 30 seconds after 10 minute time. Test turbidity at the 15 minute time.

Dwayne Stenlund and Bruce Holdhusen Minnesota Department of Transportation March 3, 2017

Attachment D

Sample 3 (From a discharge hose at a St. Paul Technical College construction site)

Test Checklist

Responsive partner. Exceptional outcomes.

8/10/16 St. Paul College Field Analyst(s): Date: Kirby Templin (Wenck Associates, Inc.) Louis Sigtermans (Wenck Age ciates, huc.) Site: Jeff Strom (Wenck Associates, Inc.) Other

Product Test List						
Test # Test Completed		Product Name	Manufacturer			
1	\times	Control	17.1			
2	X	Floc 06	Innovative Turf Solutions			
3	×	SCI-CW-A0	Standard Contracting			
4	\mathbf{X}	Earth Poly-Stable Plus	Earth and Road			
5	×,	Liquifloc 1%	Dober			
6	×	LB2101 (first) then Liquifloc 1% (second)	Dober			
7	×	Biostar-CH 2%	Hild and Associates			
8	X	APL Bridger	Hild and Associates			
9	\times	Biostar-CH (first) then APL Bridger (second)	Hild and Associates			
10	X	APL Bridger (first) then Biostar-CH (second)	Hild and Associates			
11	X	APS 703d#3 Floc Log	Applied Polymer Systems, Inc.			
12	×	APS 706b Floc Log	Applied Polymer Systems, Inc.			
13	X	APS 703d#3 Floc Log and 706b Floc Log (simultaneously)	Applied Polymer Systems, Inc.			

Measurement Spoon	Equivalent Measurement	Volume Equivalent (fl oz)	Volume Equivalent (mL)
Drop	1/64 Teaspoon (1/2 Smidgen)	0.002604	0.07701
Smidgen	1/32 Teaspoon (1/2 Pinch)	0.005208	0.1540
Pinch 1/16 Teaspoon (1/2 Dash)		0.01042	0.3081
Dash	1/8 Teaspoon (1/2 Tad)	0.02083	0.6161
Tad	1/4 Teaspoon	0.04167	1.232

1

COLUMNNESONA TOLELLA		Test #	1		WENCK ASSOCIATES Responsive partner. Exceptional outcomes.
2/10	116		Field A	nalyst(s):	
Date:	/10			emplin (Wenck Associ	
site:St. Pa	~ (lolling	l		gtermans (Wenck Ass am (Wenck Associates	
	0		Other		
Product Tested: Control				Significant React	on? Y N
Mixing Method: No Mixing Me	thod			Reduction to < 50	<u>) NTU? Y N</u>
Sample Parameters:					<u> </u>
Reading	Time	Temp (°C)	pН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial	8.50	21.5	8.14	>1000	rurbiulty (1110)
Final	8:55	Les Samuel			71000
Notes: * The filter used was a coffee filter					
* Thre was som settle	, noticel	astrall.	testnes	e conflicted	hour nutreolicastil
· The control is a reference that ca	applette, Tr	bidity we		ked > 100	0
		and the ICoulto I	ULL LIC DIUL	JUCIO LIIOL WEIG LESLE	

Indicate Field Analyst(s):

Other

Kirby Templin (Wenck Associates, Inc.)

Significant Reaction?

Reduction to < 50 NTU?

Jeff Strop (Wenck Associates, Inc.)

Exceptional outcomes.

Date:	B/2 3/	10/16
Site:	51. Pal	College

Product Tested: Floc 06 (Innovative Turf Solutions)

Mixing Method: Rapid Mix (Shaking)

Sample Parameters:

Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial (Control)					
Final	4:15	22.7	5.53	71.000	71,000

Dosing Table:

<u>8</u>		00		Time	Dose	Cum.	NTM
Time (min)	Dose Added (Spoon - Drop)	Cumulative Dosage (Spoon - Drop)	Pre-filter Turbidity (NTU)	12:20	4	15	10 mil
6:00	L	2		14:30	16	15	
0:45	1	2		11/70	10	31	7,1,00
5:00	1	3		1			
3:00	1	4					
4:00	1	5					
5:00	1	6					
6:00	(7					
7:00	2 (milyon) 9		1			
8:50	2 (sonda	2) ((1
Notes:		/					1
* The filter used	was a coffee filter.	1.50				-0	
No	rte: after	16 days as	Ided (3/ cm	mature	notice	2	
	produce	times in	ot Fully	dirsoluty	x		
x-settly	fook time, it.	mys notical whi	le oth test were m	I find the	Fller	os set H	3.
Mor mas		0	1		1 10 0 0		/
	ce: * Turbidit	was deked a	Wall tests pert	wood Sol	6 NTU	affrall	taks
• Add 1 Drop (M	easurement Spoon) to sa	ample bottle, close lid, and	shake for 5 seconds. Let si	t to react for rem	ainder	afrall 2: 25	fornd
		remainder of 5 minutes to			eat	P	ing

Sheets and guidance developed through field testing of products

until desired results.

Fest	#2	Sheet	of

MINN	SOL
DE	1 10
ART	IN IN
MEL	1500
OFT	RAN

Indicate Field Analyst(s):

Other

Kirby Templin (Wenck Associates, Inc.)

Jeff Stron (Wenck Associates, Inc.)

Significant Reaction?

Reduction to < 50 NTU?

Exceptional outcomes.

Y (N)

Y (N) but reacting

.

Date:	8/10/16	
Site:	St. Paul	(ollege

.

Product Tested: SCI-CW-A0 (Standard Contracting)

Mixing Method: Rapid Mix (Shaking)

Sample Parameters:

Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial (Control)					
Final	10:00	23.7	779	399.1	391.8

Dosing Table:

Starting Time (clock): 9:28

(Time (min)	Dose Added (Spoon - Drop)	Cumulative Dosage (Spoon - Drop)	Pre-filter Turbidity (NTU)	Time	Don	Cm.	NTY
	0,00				13:30	4	22	547.8 At
	1:00	(2		19:30	u	21	502 0
	1:40	L	3		26:00	J	46	790.0
	2:15		4			-1	40	577.1
	3:30	2	6					
	4:00	2	8		1			
	4:45	2	10					
	5:45	4	14		-			
	7:00	4	18 × floc g	>1,000	1			- 11 - 11
	Notes:		floc 4	tarted occurry - work	r column	5+11	very to	r6.2 (18)
	* The filter used	was a coffee filter.	At ut c	umaline to at	- 22	hear	n notic	rbid (18)
	-		the	t floc may	not f	ulla	d asolu	
						1		0
N. 127 1-120102	* Floc Se	thed ad vas	reticede on both	on hovener was	~ colom	n was	still the	Lit .
LidSpn	n # APhr			emisured. 37			<u> </u>	
0	Mixing Guidand	ce:						
	• Add 1 Drop (Me	easurement Spoon) to sa	mple bottle, close lid, and	shake for 5 seconds. Let si	to react for r	emainder		
			remainder of 5 minutes to					
1	until desired resu							

Test #3 Sheet _____ of ___

	EPARTMENT OF TRA	ORTATION AND		A Te	st # 4		ASSOCIATES Responsive partner. Exceptional outcomes.
	Date:	8/10/1 St. P-	L ~ 1 (c	llege	Kirby Lquis	Sigtermans (We rom (Wenck Ass	st(s): Associates, Inc.) neleAssociates, Inc.)
		sted: <u>Earth Po</u> hod: <u>Rapid M</u>		is (Earth and Road)	<u></u>	Significant R	not size
	ء Sample Parame	ters:					
¥	, Readin		Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (N	- oot meer
	Fina		10:30	23.3	7.85		- su roles
	Time (min) ().00 ().30	me (clock): _ Dose Add (Spoon - D [Cumulative Dosage (Spoon - Drop) L	Pre-filter Tur (NTU) No M 627-0	tore ton	iction noted
-	(3:00	(3 4	587.1 d.d.not f	est Arot	similar to previou
	Notes: * The filter used w	as a coffee fill	er.		5		<i>e</i>
<u></u>		H M	-loc J	id not s	loc sitt	ted we	Il tim shuled to tom
	k	WX fo	withis	h appo.	gel su	scherce	did not test ter
•		surement Spo	on) to sample	e bottle, close lid, and	shake for 5 second	ds. Let sit to read	

					1					
CPARTMENT OF TR	AND	15.		Tes	st # .	5			١	Associat Responsive pai Exceptional outo
	2/10/	Ir				Indic	ate Field	Analyst(s)):	
Date:	0117	0				Kirby	Templin (Wenck Asso	ociates, Ind)
1222010	61 Pa	10	lece			Louis	Sigterma	ns (Wenck A	Associates,	Inc.)
Site:	/1.10		n g-		90	-	Xi	nck Associat	tes, Inc.)	
						Other	1			
Product T	ested: Liquiflo	oc 1% (Dober)					Signifi	cant Reacti	ion?	Y N
Mixing Me	ethod: <u>Slow M</u>	lix (Stirring)					Reduct	tion to < 50	D NTU?	Y N
Sample Param	neters:									
Read	ling	Time (clock)	Ter (°		р	н	100 PP 10	e-filter lity (NTU)		filter / (NTU)*
Initial (C	Control)					25				
Fin	al	11:45	25	5	7.0	15	8	6.12	100	6
Dosing Table: Starting T Time	fime (clock): Dose Ad		Cumulative I	Dosade	Dro-f	ilter Tur	da i dita a	7		
(min)	(Drop		(Drop)		rie i	(NTU)	biuity			
0.00			l					NO MO M	actu	
1:15	(2					nor	each	
2:30			3					NO F	encti	in
4.30			Z					nor	eact.	an
5:20	2		8					no		in
7:00	3		11					hon	in chi	n
8:15	З		14	-				000	and the	5
9:15	3		17					51:20	Frinc	tim nol
Notes:			Time 1	Dor	x	Cum	. 1	NTU	1	ntu nol
* The filter used	was a coffee fi	lter.	10:45	3		20		71,000		lightn
			16:00	3		27	5	7 ,00	0 9	ilisht.
			21:30	3		26		805.	7	0
		4	28:30	3		29		432.0	0	
			34:00	3	3	3.3	L	508.4	(
			38:30	3		35		125.9		
			44.	<u>_</u>						
Mixing Guidance • Add 1 drop and			14:00	, 'z	5	38		80,12	5	

Other

Responsive partner. Exceptional outcomes.

Date:	3/10/16
Site:	St. Pal College

Indicate Field Analyst(s): Kirby Templin (Wenck Associates, Inc.) - CHI I ates, Inc. Jeff Strom (Wenck Associates, Inc.)

Significant Reaction?

Reduction to < 50 NTU?

Product Tested: Dual Part System (DPS) LB2101 and Liquifloc 1%

(Dober)

Mixing Method: Rapid Mix - LB2101 (Shaking) Slow Mix - Liquifloc 1% (Stirring)

Sample Parameters:

Reading	Time (clock)	Temp (°C)	pН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial (Control)					a de la deservición de
Final	1:15	17.9	7.2.4	71000	> (0 00

Dosing Table:

3:45 Start Time (clock):

Step Table:

Time (min)	Step	Pre-filter Turbidity (NTU)		Step	LB2101 Added (Drops)	Liquifloc 1% Added (Drops)	D	nula osaș Drop	
0:00	1		reach	1	1	1	1	1	1
1:30	2	nou	reaction	2	2	1	3	1	2
3:00	3	no.	mater	3	2	2	5	1	4
4:45	4	no	reach	4	3	2	8	1	6
6:15	5	hom	cactin	5	3	3	11	1	9
7:45	6	No re.	nty	6	4	3	15	1	12
1:15	7	nore	altn	7	4	4	19	1	16
11:15	8	no rec	ectim	8	5	4	24	1	20
12:15	9		action	Cuppu	lative Dosage: I.	B2101 / Liquifl	oc 1%	1	25
lotes; 15	10	no re	action	10	6	5	35	1	30
The filter gs	ed was a	coffee filter	(111	6	6	41	7	36
20:00	Ta	>1000	7	ti		6	48	1	42
	10	- 1000	-	13		7	55	1	49

\$ Plac was notice of co lim acrumulate an Mixing Guidance: 😽

• Start mixing ratio at step one which is to add 1 drop LB2101 and shake for 5 seconds and then add 1 drop Liquifloc 1% and stir for 5 seconds. Let sit to react for remainder of 1 minute. If no reaction is noticed, perform next mixing step. If reaction is

noticed, wait remainder of 5 minutes to test turbidity (Allows floc to settle). Repeat for next mixing step until desired results. LidSpm & Altrall cajudd ned turbidity was testi to 71000

Test #6 Sheet

was sti

turbid

Finaland

End ready

51

MINNE	SOLA
E	10
PAR	XE
THE REAL	-HO
WTOFT	RANSP

Indicate Field Analyst(s):

Other

Kirby Templin (Wenck Associates, Inc.) Louis Sigtermans (Wenck Associates, Inc.) Jeff Strom (Wenck Associates, Inc.)

Significant Reaction?

Reduction to < 50 NTU?

#Then was

Responsive partner. Exceptional outcomes.

reaction, Not significant.

1653

Date: _	8/10/16	
Site: _	St. Paul College	

Product Tested: Biostar-CH 2% (Hild and Associates)

Mixing Method: Slow Mix (Stirring)

Sample Parameters:

Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial (Control)	8				A Statistics
Final	10:19	22.7	7.73	763.5	760,2

Dosing Table:

9:5 Starting Time (clock):

Time (min)	Dose Added (Drop)	Cumulative Dosage (Drop)	Pre-filter Turbidity (NTU)]	Time	(drap)	cumlat	
0	t	1			-	1.00	Carry	1
0.5	1	2			14	19	9	ľ
1	Î	3	·		9.5	1 🜮	10	\downarrow
15	1	4			5	144	11	
Z	ſ	S			5.5	3	14	L
2.5	l	6			11	3	17	
3	(7			6	3	20	
3.5	1	8	(6.3	3	23	
	10		Mar ours		12.5	3	26	21000
Notes:			flocora	al of	13.0	3	29 1	7175

* The filter used was a coffee filter.

nasstil tubid. * fine floc mas nothe l to settle botter campeter J. J.Spm * Aftrall ferti turnid nnu **Mixing Guidance:**

Add 1 drop and stir for 5 seconds. Let sit to react for remainder of 30 seconds. If no reaction is noticed, repeat.

If reaction is noticed, wait remainder of 5 minutes to test the turbidity (Allows floc to settle). Repeat until desired results.

Indicate Field Analyst(s):

Other

Krby Templin (Wenck Associates, Inc.) Louis Sigtermans (Wenck Associates, Inc.)

Significant Reaction?

Reduction to < 50 NTU?

Jeff Strom (Wenck Associates, Inc.)

Responsive partner. Exceptional outcomes.

Date:	8/10/16	
Site:	SI. Parl Glege	

Product Tested: APL Bridger (Hild and Associates)

Mixing Method: Slow Mix (Stirring)

Sample Parameters:

	Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*		
Ini	tial (Control)							
	Final	10: 45		ALC: NO	71000	>1000		
Dosing 1	able:		24.5	8.00				1
Sta	rting Time (clock):	10:20	6				1 cumlation	
Time (min	229	22	Cumulative Dosage (Drop)	Pre-filter Turl (NTU)	oidity T	ine (Dape)	(Zong)	
0		P)	(510)	(110)		4 3	14	+
0.5	1		2			4.5 3	15	+
1	1		3			5 3	18	┢
1.5	i		4			5.5 3	21	-
Z	j		5		1- Klouy-	6	24	
7.5	5 1		6		- Stigt -	6.5 3	30	>jı
3	1		7			13 3	32	1
3.5			8					210

Add 1 drop and stir for 5 seconds. Let sit to react for remainder of 30 seconds. If no reaction is noticed, repeat.

If reaction is noticed, wait remainder of 5 minutes to test the turbidity (Allows floc to settle). Repeat until desired results.

Responsive partner. Exceptional outcomes.

Date:		8/10	0/16	
Site:	4.	Parl	College	

Product Tested: Biostar-CH (first) then APL Bridger (second)

(Hild and Associates) Mixing Method: Slow Mix (Stirring)

Indicate Field Analyst(s): Kirby Templin (Wenck Associates, Inc.) Louis Sigtornians (Wenck Associates, Inc.) Jeff Strom (Wenck Associates, Inc.) Other

Significant Reaction? Reduction to < 50 NTU?

Sample Parameters:

Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial (Control)					Station of
Final	11:40	24.8	7.75	573.7	549.8

Dosing Table:

Starting Time (clock):_]]:10

Time (min)	Product Code (A or B)	Dose Added (Drop)	Cumulative Dosage (Drop)	Pre-filter Turbidity (NTU)	Time	(ade	Dove	Cum
0	ß	١	1		4	B	12	14
0.5	A	1	d		4.5	A	2	16
1	ß	l	3		E	B	3	19
1-5	A	l.	4	<u></u>	111 6	A	3	22
2	ß	L	6	/ ſ	6.5	B	3	25
2.5	A	à	8	7	1027	A	3	28
3	в	2	10		- 14	B	3	31
3.5	A	2	12	68	1 74.5	A	3	34
	le: A = APL Bridge	r, B = Biostar-CH	2%	573	76 21.5	BA	3	37 40
lotes:	sed was a coffee filte	r		(573	76 21.5	A	-	3

+ some on borto. hun Win J: 25pm # APL 486 nem asime æ

Mixing Guidance:

• Add 1 drop Biostar-CH and stir for 5 seconds. Let sit to react for remainder of 30 seconds. Add 1 drop APL Bridger and stir

for 5 seconds. Let sit to react for remainder of 30 seconds. If no reaction is noticed, repeat. ONLY TAKE TURBIDITY READING

IF BOTH BIOSTAR-CH AND APL BRIDGER HAVE BEEN ADDED, AND IF THERE IS A REACTION. If reaction is noticed, wait

remainder of 5 minutes to test the turbidity (Allows floc to settle). Repeat until desired results.

1

Indicate Field Analyst(s):

Other

(Kirby Templin (Wenck Associates, Inc.)

Jeff Strom (Wenck Associates, Inc.)

Significant Reaction?

Reduction to < 50 NTU?

Responsive partner. Exceptional outcomes.

Y N

Y N

Date:	8/10/16
Site: _	St. Paul College

Product Tested: APL Bridger (first) then Biostar-CH (second)

(Hild and Associates)

Mixing Method: Slow Mix (Stirring)

Sample Parameters:

	Re	ading	Time (clock)	Temp (°C)	pH	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*	
	Initial	(Control)						
		inal	12:14	29.1	7.43	233.4		
	Dosing Table Sta	rt Time (clock):	11:46)			* farget h	
Ć	Time (min)	Product Code (A or B)	Dose Adde (Drop)	1.447	ve Dosage Pr rop)	e-filter Turbidity (NTU)	Time D.	USE DUSE IVIL
	0	A	3		3		4 /A	3 27
	0.5	ß	3	17. 11	6		45B3	3 30
	1	A	3		9		ETA 3	33
	1.5	B	3		17		Plata	12,
	2	A	3		15		55D 5	
	2.5	ß	3		8		11-	
	3	A	3		R(11.5 B	
	3.5 Product Code	: A = APL Bridge	3		4		18 A 3	
	Froduct cout	a A – Art bridge	a, b – biostai-	CH 270			13.707	10/20.4
	Notes:							8
	* The filter use	ed was a coffee filt	er.					
7	\$ floc	settled	al not	heeable o	n bottam			8 N
2:25pn×	K APto	all test	c const		1 1 .	c remaso	vel at se	j_16
auspie	Mixing Guida	nce:	7		/	0		
	• Add 1 drop A	PL Bridger and stir	r for 5 seconds. I	et sit to react for	remainder of 30 se	conds. Add 1 drop Bio	star-CH and stir	
	for 5 seconds.	Let sit to react for	remainder of 30	seconds. If no re	action is noticed, re	peat. ONLY TAKE TUR	BIDITY READING	
						CTION. If reaction is r	noticed, wait	
5	remainder of 5	minutes to test th	e turbidity (Allow	vs floc to settle).	Repeat until desired	l results.		

Indicate Field Analyst(s):

Other

Kirby Templin (Wenck Associates, Inc.) Louis Sigtermans (Wenck Associates, Inc.) Jeff Strom (Wenck Associates, Inc.)

Significant Reaction?

Reduction to < 50 NTU?

Responsive partner. Exceptional outcomes.

Date: _	8/10/16		
Site: _	St. Pal	College	

Product Tested: APS 703d#3 Floc Log (Applied Polymer Systems, Inc.)

Mixing Method: Slow Mix (Stirring)

Sample Parameters:

Reading	Time (clock)	Temp (°C)	pH	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial (Control)					Land C. Barry
Final	9:33	22.6	7,78	71000	71000

Dosing Table:

Starting Time (clock):

Time (min)	Pre-filter Turbidity (NTU)
5	>1000
10	71000
Sti	r for 30 seconds
15	>1000
20	7(000
	stir 30 secon
15	7(000
0	71000

Notes:

* The filter used was a coffee filter.

Some settle × column is still tw bid. otta w ral did 5 pm Aftra fes, 757.1 pr a

Mixing Guidance:

• Add 1/2 pencil size eraser piece that fits in a drop size measurement spoon. Stir for 1 minute and let sit for remainder of 5 minutes. Test turbidity at the 5 minute and 10 minute times. Stir for 30 seconds after 10 minute time. Test turbidity at the 15 minute time.

Test #11 Sheet

<

Responsive partner. Exceptional outcomes.

8/101 16 Date: college Site:

(irby Temp	lin (Wenck Associates, Inc.)
Quis Sigter	mans (Wonck Associates, Inc.)
leff Strom (Wenck Associates, Inc.)
Other	

Significant Reaction?

Reduction to < 50 NTU?

Product Tested: APS 706b Floc Log (Applied Polymer Systems, Inc.)

Mixing Method: Slow Mix (Stirring)

Sample Parameters:

Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial (Control)					
Final	9:35	22.5	7.78	71000	0001 0

Dosing Table:

'ime min)	Pre-filter Turbidity (NTU)
5	>1000
10	71000
St	ir for 30 seconds
15	>1000
-0	>(000
	stir zouronds
-5	>1000
30	71000

Notes:

* The filter used was a coffee filter.

settling X SOM, roticable eli into ho 15 coln 2.25 pm X a K3 fin turbid a 1000 **Mixing Guidance:**

• Add 1/2 pencil size eraser piece that fits in a drop size measurement spoon. Stir for 1 minute and let sit for remainder of 5 minutes. Test turbidity at the 5 minute and 10 minute times. Stir for 30 seconds after 10 minute time. Test turbidity at the 15 minute time.

	ON THE TOP THE	SORTATION SI		Test	t # 13		ASSOCIATES Responsive partner,
	Date: Site:	8/10/ 5t. Paul	16 Colley	L	- Kirby	ate Field Analyst(s) Femplin (Wenck Asso Sigtermans (Wenck A rom (Wenck Associat	Exceptional outcomes. : ciates, Inc.) ssociates, Inc.)
		(Applied lethod: Slow Mix	Polymer Systems	5b Floc Log (simulta 5, Inc.)	aneously)	Significant Reacti	0
	Re	ading	Time	Temp	рН	Pre-filter	Post-filter
	Initial	(Control)	(clock)	(°C)		Turbidity (NTU)	Turbidity (NTU)*
		inal	9:37	27.6	7.59	71000	6001K
	Time (min) 5 10	: g Time (clock): Pre-filter Tu (NTU) > 1000 > 1000 for 30 seconds	irbidity)		i.		
	15	>1000					
	30	>1000	2				
	2	1	leads.				
	25	>1000	>				
	30	21000					
	Notes: * The filter use	d was a coffee fil	ter.				
Spm	* Some * Aftr	settly/fl 2/1 Jests	ec notice Complet	able, h.	dity ina		ed at 797.7

Mixing Guidance:

• Add 1/2 pencil size eraser piece that fits in a drop size measurement spoon for both products simultaneously. Stir for 1 minute and let sit for remainder of 5 minutes. Test turbidity at the 5 minute and 10 minute times. Stir for 30 seconds after 10 minute time. Test turbidity at the 15 minute time.

Sheets and guidance developed through field testing of products

of Test #13 Sheet

Dwayne Stenlund and Bruce Holdhusen Minnesota Department of Transportation March 3, 2017

Attachment E

Sample 4 (Created from a soil sample and water collected at a Hwy 371 construction site in central MN)

Test Checklist

Responsive partner. Exceptional outcomes.

Field Analyst(s): Date: 6 Louis Sigte Site:

Kirby Templin (Wenck Associates, Inc.) and (Wenck Associates, Inc.) Jeff Strom (Wenck Associates, Inc.) Other

Product Test List						
Test # Test Completed		Product Name	Manufacturer			
1	X	Control				
2	X	Floc 06	Innovative Turf Solutions			
3	X	SCI-CW-A0	Standard Contracting			
4	X	Earth Poly-Stable Plus	Earth and Road			
5	X	Liquifloc 1%	Dober			
6	X	LB2101 (first) then Liquifloc 1% (second)	Dober			
7	X	Biostar-CH 2%	Hild and Associates			
8	X.	APL Bridger	Hild and Associates			
9	X	Biostar-CH (first) then APL Bridger (second)	Hild and Associates			
10	×	APL Bridger (first) then Biostar-CH (second)	Hild and Associates			
11	X	APS 703d#3 Floc Log	Applied Polymer Systems, Inc			
12	X	APS 706b Floc Log	Applied Polymer Systems, Inc			
13	X	APS 703d#3 Floc Log and 706b Floc Log (simultaneously)	Applied Polymer Systems, Inc			

Measurement Spoon	Equivalent Measurement	Volume Equivalent (fl oz)	Volume Equivalent (mL)
Drop	1/64 Teaspoon (1/2 Smidgen)	0.002604	0.07701
Smidgen	1/32 Teaspoon (1/2 Pinch)	0.005208	0.1540
Pinch	1/16 Teaspoon (1/2 Dash)	0.01042	0.3081
Dash	1/8 Teaspoon (1/2 Tad)	0.02083	0.6161
Tad	1/4 Teaspoon	0.04167	1.232

Field Analyst(s):

Other

Kirby Templin (Wenck Associates, Inc.) Louis Sigtermons (Wenck Associates, Inc.)

Significant Reaction?

Reduction to < 50 NTU? Y N

Jeff Strom (Wanck Associates, Inc.)

Responsive partner. Exceptional outcomes.

Y

Ν

Date:	3/11/16	
	1 di	
Site:	"STL	(Synthetic)

Product Tested: Control

Mixing Method: No Mixing Method

Sampl

Reading	Time	Temp (°C)	pН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial	9:20	21.1	6.66	507.9	
Final	9:25				496.6

Notes:

* The filter used was a coffee filter.

3:05 m * Altra was remained at 443.4 tests rondited w

• The control is a reference that can be used to compare the results from the products that were tested.

. There were no products tested in the control.

Indicate Field Analyst(s):

othe

Kirby Templin (Wenck Associates, Inc.) Louis Sigtermans (Wenck Associates, Inc.)

Significant Reaction?

Reduction to < 50 NTU?

Jeff Strom Wenck Associates, Inc.)

Responsive partner. Exceptional outcomes.

()

P

Ν

N

Date:	-3/11/12		
Site: _	37	71 (sy	thetic)

Product Tested: Floc 06 (Innovative Turf Solutions)

Mixing Method: Rapid Mix (Shaking)

Sample Parameters:

Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial (Control)	9:20	21.1	6.66	507.9	
Final	9:50	21.6	3.91	44.20	11.15
o Table:			lowet	lar sizion	•

Dosing Table:

9:30 Starting Time (clock):

Time (min)	Dose Added (Spoon - Drop)	Cumulative Dosage (Spoon - Drop)	Pre-filter Turbidity (NTU)]
0.00	(t	no mactu	ACRE
:00	1	2	no reactive	
2:20	1	3	no reaction	
4:00	(4	no neadfiv	-
5.30	1	5 #	106.7	
11:15	l	6	41.24	
16:30	1	7	44.20	
50 et				

Notes:

3

* The filter used was a co	Note on drops 1-4 product not fully doss * Note on drop 5 reaction occurred, but floc 7-7+30	- top
prix Altr all test	rempleted, Tulidity was remeasured at 11.75	
Mixing Guidance: Add 1 Drop (Measurem)	ent Spoon) to sample bottle, close lid, and shake for 5 seconds. Let sit to react for remainder	
of 30 seconds. If reaction until desired results.	n is noticed, wait remainder of 5 minutes to test the turbidity (Allows floc to settle). Repeat	

Test #2 Sheet

Indicate Field Analyst(s):

Other

Kroy Templin (Wenck Associates, Inc.) Louis Sigtermans (Wenck Associates, Inc.)

Jeff Strom (Wenck Associates, Inc.)

Significant Reaction?

Reduction to < 50 NTU?

Responsive partner. Exceptional outcomes.

Date:	8	11	16
Site:	<u> </u>	37	(Sinthefic)

Product Tested: SCI-CW-A0 (Standard Contracting)

Mixing Method: Rapid Mix (Shaking)

Sample Parameters:

Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial (Control)	9:20	21.1	6.66	507.9	Underse in Antonio de
Final	10:42	22.1	7.35	146.5	114.9

Dosing Table:

Starting Time (clock): 10.07

Time (min)	Dose Added (Spoon - Drop)	Cumulative Dosage (Spoon - Drop)	Pre-filter Turbidity (NTU)
0:00	2	2	no reacta
0:45	l	3	no reacti
2:00	l	4	261.5 slight read
3.15	l	5	261.5 slight read
8-45	1	6	202.5
13:45	1	7	170.L
19:15	ĺ	-73	153.7
24:00	1	9	144.1
29:16	1.	10	176-5

Notes:

* Alto

* The filter used was a coffee filter.

Jests wer

For de 5 Un M Der

WAS

war.

30Spm

Mixing Guidance:

al

Add 1 Drop (Measurement Spoon) to sample bottle, close lid, and shake for 5 seconds. Let sit to react for remainder

twhidi

of 30 seconds. If reaction is noticed, wait remainder of 5 minutes to test the turbidity (Allows floc to settle). Repeat

until desired results.

Test #3 Sheet

111,3

Indicate Field Analyst(s):

Kirby Tempih (Wenck Associates, Inc.) Louis Sigtermans (Wenck Associates, Inc.) Jeff Strom (Wenck Associates, Inc.)

Significant Reaction?

Reduction to < 50 NTU?

Responsive partner. Exceptional outcomes.

Date:	3/11/26	7
Site:	371 (Synthetiz)	

Product Tested: Earth Poly-Stable Plus (Earth and Road)

Mixing Method: Rapid Mix (Shaking)

Sample Parameters:

Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial (Control)	9:20	21.1	6.66	507.9	S BROCHTER.
Final	11:20	22.6	685	492-9	4545

Dosing Table:

Starting Time (clock): 10:58

Time (min)	Dose Added (Spoon - Drop)	Cumulative Dosage (Spoon - Drop)	Pre-filter Turbidity (NTU)	Time	Post	Cam.	
0:00	(1	No reach	9:15	5	11	norealth
0:50	(2	1 s react	10:15	2	13	noreacty
2:00	L	3	no reaction	n11:30	2	15	nonalt
3:10	l	Y	no reaction	12:30	2	17	roreach
4:15	í	5	no reaching	13:30	5	19	no reach
5:15	l	Ś	no reacth	15:00	16	25	492.9
6:15	1	7	no reache			13	110.1
7:00	Ì	8	no reaction				
8:00	V.	9	no reaction				

Notes:

* The filter used was a coffee filter.

alte £ Dodduc COROX to sta 5.05pn * APh ten 9 11 War wee Coim homeas un

Mixing Guidance:

Add 1 Drop (Measurement Spoon) to sample bottle, close lid, and shake for 5 seconds. Let sit to react for remainder

of 30 seconds. If reaction is noticed, wait remainder of 5 minutes to test the turbidity (Allows floc to settle). Repeat

until desired results.

-9

Indicate Field Analyst(s):

Other

Kirby Templin (Wenck Associates, Inc.) Louis Sigtermans (Wenck Associates, Inc.) Jeff Strom (Wenck Associates, Inc.) JOEL TOSO

Significant Reaction?

Reduction to < 50 NTU?

Responsive partner. Exceptional outcomes.

N

N

8/11/16
731 (synthetic)

Product Tested: Liquifloc 1% (Dober)

Mixing Method: Slow Mix (Stirring)

Sample Parameters:

Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial (Control)	9:20	21.1	6.66	507.9	
Final	1:45pm	ZYYC	67	49	35
sing Table:		23.8	6.1		

Dosing Table:

Starting Time (clock): 1:09 pm

Time (min)	Dose Added (Drop)	Cumulative Dosage (Drop)	Pre-filter Turbidity (NTU)]
U	(
1	1	2		-
2	Z	4		1
3	1	5		1
4	2	7		1
5	2	9		-
6	2	1(
70	23	13		-
Jan	3	19	2-5 June	reaction
otes: 15	3	22	(88 4	
The filter used	was a coffee filter.	3.5	93	
27	6	34	Ha and	
1200		/		

3:05pm * Arter all teste 21.93 was remeasined at nene Maynes n Mixing Guidance:

Add 1 drop and stir for 5 seconds. Let sit to react for remainder of 1 minute. If no reaction is noticed, repeat.

If reaction is noticed, wait remainder of 5 minutes to test the turbidity (Allows floc to settle). Repeat until desired results.

Test #5 Sheet _____ of _____

Responsive partner. Exceptional outcomes.

Date:	stutus
Site:	371 (synthetic)

Indicate Field Analyst(s):

Significant Reaction?

Reduction to < 50 NTU?

Kirby Templin (Wenck Associates, Inc.) Louis Sigtermans (Wenck Associates, Inc.)

Jeff Strom (Wenck Associates, Inc.)-

Other JOEL Toso

Product Tested: Dual Part System (DPS) LB2101 and Liquifloc 1%

(Dober)

Mixing Method:	Rapid Mix - LB2101 (Shaking)
	Slow Mix - Liquifloc 1% (Stirring)

Sample Parameters:

Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial (Control)	9:20	21.1	6.66	507.9	
Final	2:41	25.2	4.7	8/ 102	84

Dosing Table:

1:54pm Start Time (clock):

Step Table:

Time (min)	Step	Pre-filter Turbidity (NTU)	Step	LB2101 Added (Drops)	Liquifloc 1% Added (Drops)	D	nula Iosa Drop	
Ó	1		1	1	1	1	1	1
2	2		2	2	1	3	1	2
3	3		3	2	2	5	1	4
4	4		4	3	2	8	1	6
5	5		5	3	3	11	1	9
6	6		6	4	3	15	1	12
F	7		7	4	4	19	1	16
8	8.	372	8	5	4	24	1	20
The		2 State	Cumu	ative Desage:	.B2101 / Liquifi	oc 1%	1.	15
otes	191	182	10	6	5	35	1	30
he filter us	d was	coffee filter.	TT	6	6	41	7	36
55	10	177	Id	121	6	45	1	41
	111	152	-			1 107	-) a
33	-							

Mixing Guidance:

3:05p

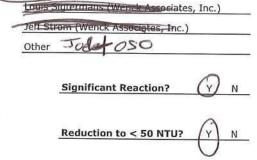
• Start mixing ratio at step one which is to add 1 drop LB2101 and shake for 5 seconds and then add 1 drop Liquifloc 1% and stir for 5 seconds. Let sit to react for remainder of 1 minute. If no reaction is noticed, perform next mixing step. If reaction is noticed, wait remainder of 5 minutes to test turbidity (Allows floc to settle). Repeat for next mixing step until desired results.

Indicate Field Analyst(s): Date: Indicate Field Analyst(s): Site: Indicate Field Analyst(s): Indicate Field Analyst(s): Indicate Field Analyst(s): Site: Indicate Field Analyst(s): Indicate Field Analyst(s): Indicate Field Analyst(s): Indicate Field Analyst(s): Indicate Field Analyst(s): Site: Significant Reaction? Mixing Method: Slow Mix (Stirring) Reading Time (clock) Indicate Field Analyst(s): Mixing Method: Slow Mix (Stirring) Reduction to < 50 NTU?	Indicate Field Analyst(s): Date: Indicate Field Analyst(s): Site: Indicate Field Analyst(s): Significant Reaction? Mixing Method: Slow Mix (Stirring) Reduction to < 50 NTU?	<th>Date: $3/11/16$ $1ndicate Fleit Analyst(s):$ Site: $3/11/16$ $8sociates, Inc.)$ Site: $3/11/16$ $8sociates, Inc.)$ Site: $3/11/16$ $8sociates, Inc.)$ Site: $3/11/16$ $8sociates, Inc.)$ Date: 1005 Significant Reaction? N Mixing Method: Slow Mix (Stirring) Reduction to < 50 NTU? N Sample Parameters: \boxed{Clock} $\boxed{(clock)}$ $(c$</th> <th>CARTINE SOLATIOLELLA</th> <th></th> <th>Tes</th> <th>t # 7</th> <th></th> <th>R</th> <th>ENCK ASSOCIATES</th>	Date: $3/11/16$ $1ndicate Fleit Analyst(s):$ Site: $3/11/16$ $8sociates, Inc.)$ Site: $3/11/16$ $8sociates, Inc.)$ Site: $3/11/16$ $8sociates, Inc.)$ Site: $3/11/16$ $8sociates, Inc.)$ Date: 1005 Significant Reaction? N Mixing Method: Slow Mix (Stirring) Reduction to < 50 NTU? N Sample Parameters: \boxed{Clock} $\boxed{(clock)}$ $(c$	CARTINE SOLATIOLELLA		Tes	t # 7		R	ENCK ASSOCIATES
Mixing Method: Slow Mix (Stirring) Reduction to < 50 NTU?	Mixing Method: Slow Mix (Stirring) Reduction to < 50 NTU?	Mixing Method: Slow Mix (Stirring) Reduction to < 50 NTU?	Date: <u>8/11/1</u>	16 (Syn Ke)	hic)	Louis	Templin (Wench Sigtermans (We	vst(s): Associates, Inc.) mck Associates, Inc		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ReadingTime (clock)Temp (°C)pHPre-filter Turbidity (NTU)Post-filter Turbidity (NTU)*Initial (Control) $q_i \downarrow 0$ $\downarrow 1.1$ 6.66 507.9 Final[1] 18 $\downarrow \downarrow .5$ 6.0 3 , 36 [1.3]Dosing Table: Starting Time (clock):[0] 573[1.3][1.3]TimeDose Added (Drop)Cumulative Dosage (Drop)Pre-filter Turbidity (NTU)[1.3] 0.5 1 \downarrow 4 10 0.5 1 \downarrow 4 10 0.5 1 \downarrow 4 10 1.5 1 \downarrow 4 10 1.5 1 \downarrow 5 3 1.5 1 \downarrow 5 3 1.5 1 6 3 3 3.5 1 6 3 3 3.5 1 6 3 3 3.5 1 6 3 3 3.5 1 6 3 3 3.5 1 6 3 3 3.5 1 3 3 5 3.5 1 3 3 3 3.5 1 3 3 5 3.5 1 3 3 3 3.5 1 3 3 3 3.5 3 3 3 3 3.5 3 3 3 3 3.5 3 3 3 3 3.5 3 3 </th <th>Reading Time (clock) Temp (°C) pH Pre-filter Turbidity (NTU) Post-filter Turbidity (NTU)* Initial (Control) $q_i \downarrow d$ $d_i \land i$ $\delta_i \delta \delta$ $SOZ_i q$ Final $([1], 18$ $\lambda \downarrow 5$ $\delta_i O$ $3_1 3b$ $[1.3]$ Dosing Table: Starting Time (clock): $[0], 573$ $[0], 573$ $[1.3]$ Dosing Table: Starting Time (clock): $[0], 573$ $[1.3]$ (min) Dose Added (Drop) (ntu) $[1.3]$ 0.5 1 1 $[1.5]$ $[1.3]$ 0.5 1 6 $[1.3]$ $[1.3]$ 0.5 1 6 $[1.3]$ $[1.3]$ 0.5 1 6 $[1.3]$ $[1.3]$ 0.5 1 6 $[1.3]$</th> <th></th> <th></th> <th>Associates)</th> <th></th> <th></th> <th></th> <th></th>	Reading Time (clock) Temp (°C) pH Pre-filter Turbidity (NTU) Post-filter Turbidity (NTU)* Initial (Control) $q_i \downarrow d$ $d_i \land i$ $\delta_i \delta \delta$ $SOZ_i q$ Final $([1], 18$ $\lambda \downarrow 5$ $\delta_i O$ $3_1 3b$ $[1.3]$ Dosing Table: Starting Time (clock): $[0], 573$ $[0], 573$ $[1.3]$ Dosing Table: Starting Time (clock): $[0], 573$ $[1.3]$ (min) Dose Added (Drop) (ntu) $[1.3]$ 0.5 1 1 $[1.3]$ 0.5 1 1 $[1.3]$ 0.5 1 1 $[1.3]$ 0.5 1 1 $[1.3]$ 0.5 1 1 $[1.3]$ 0.5 1 1 $[1.5]$ $[1.3]$ 0.5 1 6 $[1.3]$ $[1.3]$ 0.5 1 6 $[1.3]$ $[1.3]$ 0.5 1 6 $[1.3]$ $[1.3]$ 0.5 1 6 $[1.3]$			Associates)					
Dosing Table: Image: Starting Time (clock): Image: Image	Dosing Table: Starting Time (clock): 10:53 Time Dose Added Cumulative Dosage Pre-filter Turbidity 0 1 1 0.5 1 1 0.5 1 1 0.5 1 1 1.5 1 4 1.5 1 4 1.5 1 4 1.5 1 4 1.5 1 4 3.5 1 6 3.5 1 6 3.5 1 6 3.5 1 6 3.5 1 6 3.5 1 6 3.5 1 6 3.5 1 6 3.5 1 6 3.5	Dosing Table: Starting Time (clock): 10:53 Time Dose Added Cumulative Dosage Pre-filter Turbidity 0 1 1 1 1 0.5 1 3 13 14 1.5 1 4 10 13 1.5 1 6 3 13 5 3.5 1 6 3 15 5 14 1.5 1 4 5 3 16 5 3 16 3.5 1 6 3 3 15 15 16 5 3 16 5 3 16 5 3 16 5 3 16 5 3 16 5 3 16 5 3 16 5 3 15 3 15 3 15 3 15 3 15 3 15 3 15 3 15 3 15 <td< th=""><th>Reading Initial (Control)</th><th>(clock)</th><th>(°C)</th><th>6.66</th><th>Turbidity (1</th><th>1TU) Turbidity (1</th><th></th></td<>	Reading Initial (Control)	(clock)	(°C)	6.66	Turbidity (1	1TU) Turbidity (1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(Initi) (Initi) (Initi) (Initi) (Initi) 0 1 1 1 1 1 0.5 1 1 3 13 14 1.5 1 14 15 3 16 1.5 1 14 5 3 16 13 1.5 1 16 5 3 16 13 1.5 1 6 13 3 15 14 2 1 2 13 3 15 13 14 15 3.5 1 6 13 3 15 3 16 13 14 15 3.5 1 6 13 3 15 3 15 3 15 3 15 3 15 3 16 13 15 3 16 13 15 3 15 3 1.5 3 1.5 3 1.5 3 1.5 3 1.5 3 1.5 3 1.5 3 <	Dosing Table: Starting Time (clock) Time Dose A	Added Cun	nulative Dosage	Pre-filter Tu	rbidity	- D.4	Lum N	
	1 1 5 1 5 1 6 3 1 3 1 3 1 3 1 3 1 3 1 1 3 1	Notes: * The filter used was a coffee filter.	0		1 2 3	(NTU		4 2 45 3	13	
	Notes:	Notes: * The filter used was a coffee filter.	2.5		5 6 Z			5	$ \frac{19}{13} $ $ \frac{13}{53} $ $ \frac{1}{53} $ $ \frac{53}{21} $	

	PARTIN INNESONA DE LA CONTRACTA DE LA CONTRACT		Tes	st # 8	ASSOCIATES Responsive partner. Exceptional outcomes.
	Date: <u>8/1</u> Site: <u>37(</u>	(1/16 (Syn7)	tetic)	Louis Sigtermans	
	Product Tested:				ant Reaction? Y N on to < 50 NTU? Y N
	Sample Parameters:				
	Reading	Time (clock			filter Post-filter
	Initial (Control)	11-1	0 1.1	6.66 50	ty (NTU) Turbidity (NTU)*
	Final	11:5	6 23.0	6.40 33	8.3 150.8
	Dosing Table: Starting Time (c	lock): 11:2	9		
(Time D (min)	ose Added (Drop)	Cumulative Dosage (Drop)	Pre-filter Turbidity (NTU)	Time Doul (Umane) Notu
	0		l	,	4 3 11
	0.5	1	2		45 3 14
	1.5		3		5 3 17
	2		7		3.5 3 20
	2.5		6	A	6 3 23
	3	l l	7.		7.5 3 26
	3,5	1	Å		81-1-1-
					12121
	Notes:		F1		15 3 38 3680
	* The filter used was a o	coffee filter.			
	0 7				15.5 3 41 338.3
	1				
3:05pm	P1	to were way	leted, two idity	ivas nerveasued at	11,75
	Mixing Guidance:				100 B
				f 30 seconds. If no reaction i	
	II reaction is noticed, wa	aic remainder of 5	minutes to test the turbic	lity (Allows floc to settle). Re	peat until desired results.
	Sheets and guidance develo	ped through field tes		-72	Test #8 Sheet of

OSPARTMENT OF T	RANSPOLIE	1	Tes	t # 9			Res	EN SSOCIAT ponsive pa putional outer	irtner.	
Date:	8/11/	16			-	ate Field Analyst(s)				
Site:	371 (synthetic)	- July	ouis	Statermans (Wenck A rom (Wenck Associat Joe(4050	ssociates, Inc	.)		
Product	Tested: Biostar-0	CH (first) then APL B	ridger (second)			Significant Reacti	ion? Y	N N		
		l Associates)					F	1		
Mixing	Method: Slow Mix	(Stirring)				Reduction to < 50	<u>) NTU? (Y</u>			
Sample Para	ameters:						C	5		
Re	eading	Time (clock)	Temp (°C)	рН		Pre-filter Turbidity (NTU)	Post-filt Turbidity (N			
Initial	l (Control)	9:20	21.1	6.60	6	507.9	Turblatty (1	110)*		
	Final	1:54	24.3	6.16	r 2	33.36	21.1	2		
Dosing Tabl	e: ng Time (clock):	1:09						4	1	
Time	Product Code	Dose Added	Cumulative	a Dosage	Pre	e-filter Turbidity	Tintel		Ruge	Ntn
(min)	(A or B)	(Drop)	(Dro	p)		(NTU)	4 B		16	
0.5		1			-	r.	4.9 1	2	18	260.7
0.,	A	2	U U				5 A	3	$\frac{\lambda}{\lambda}$	à
1.5	Å	2	6			Į/	T	3	24	205.0
2	6	2	8				15.5 B	3	27	
25	Å	à	10	1			16 H	5	30	119.6
3	B	7	12				22.5 A	5	35	
3.5	Â	2	14				28 B	5	40	74.5
Product Cod	e: A = APL Bridg	er, B = Biostar-CH	2%				28.5 A	15		1
Notes:							351	55	50	58.06
* The filter us	ed was a coffee fil	ter.					35.5	Ŧ5	60	22
							T			33.36
		we capilitat	d, thed,	Y unsi	rei	vension at a	20.76)
Mixing Guida		53 		(/g)) 16 beau			52 2222		1	
						onds. Add 1 drop APL				
						peat. ONLY TAKE TUP		ING		
						CTION. If reaction is	noticed, wait			
remainder of 5	o minutes to test t	he turbidity (Allows i	loc to settle). R	epeat until de	esired	l results.			5	

3:05pm


Responsive partner. Exceptional outcomes.

Date: _	8/11/16	
Site: _	371 (synthetic)	

Product Tested: APL Bridger (first) then Biostar-CH (second)

(Hild and Associates)

Mixing Method: Slow Mix (Stirring)

Indicate Field Analyst(s):

Kirby Templin (Wenck Associates, Inc.)

Sample Parameters:

Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial (Control)	9:20	21.1	6.66	507.9	
Final	1:41	25.0	6.57	40.68	22-81

Dosing Table:

Start Time (clock):

Time (min)	Product Code (A or B)	Dose Added (Drop)	Cumulative Dosage (Drop)	Pre-filter Turbidity (NTU)	Time	Prodet	Dose		Nth
0	A	3	3		TO	A	5	29	-
0,5	B	3	6		10.5	B	S	34	149.9
1	A	3	9		16.5	A	5	39	
1.5	β	3	11		17	B	5	44	94.51
2	A	3	15		dd. 5	A	5	49	
2.5	B	3	18		23	6	5	54	60.11
3	A	3	21		295	A	5	59	
3.5	6	3	24	219.6	30	B	5		40-69
Product Cod	e: A = APL Bridger	, B = Biostar-CH 2	2%		10	1	1		10-69
lotes:									1

* The filter used was a coffee filter.

3:05pa * AFI has Whi a nn WALLPAG

Mixing Guidance:

• Add 1 drop APL Bridger and stir for 5 seconds. Let sit to react for remainder of 30 seconds. Add 1 drop Biostar-CH and stir

for 5 seconds. Let sit to react for remainder of 30 seconds. If no reaction is noticed, repeat. ONLY TAKE TURBIDITY READING

IF BOTH BIOSTAR-CH AND APL BRIDGER HAVE BEEN ADDED, AND IF THERE IS A REACTION. If reaction is noticed, wait

remainder of 5 minutes to test the turbidity (Allows floc to settle). Repeat until desired results.

ANNINNESOLA JOLELA		Test	t # 11		ASSOCIATES Responsive partner. Exceptional outcomes.
Q/11/1	1		Indic	ate Field Analyst(s):	
Date:	6		Kirby	Templin (Wenck Associat	es, Inc.)
544 371 5	a Male i		Louis	Sigtermans (Wenck Asso	ciates, Inc.)
Site:	yn Refic		Jeff St	rom (Wenck Associates,	Inc.)
			Other		
Product Tested: APS 70	3d#3 Floc Log (App	lied Polymer Syste	ems, Inc.)	Significant Reaction	2 Y N
Mixing Method: Slow Mi	x (Stirring)			Reduction to < 50 N	
					$\overline{\mathbf{O}}$
Sample Parameters:					
Reading	Time	Temp	pН	Pre-filter	Post-filter
Initial (Control)	(clock)	(°C)		Turbidity (NTU) Tu	urbidity (NTU)*
Final	9.00	11-1	6-66	507.9	
	1.27	QUE 21.9	9,95	414,9	412,3
Dosing Table:	D'RG		-		
Starting Time (clock):					
Time Pre-filter T (min) (NTU					
5 467.	8				
10 473.	7				
Stir for 30 second	s				
15 500.	2				
10 485.	3				
Sty 30 Lu	nes				
25 490.8					
>0 474,	9				
Notes:					
* The filter used was a coffee fil	lter.				
		. /			
* After all tests	we an	detal, hr	bidik we	is nemensul as	- 323-7
Mixing Guidance:	Û		/	1	
• Add 1/2 pencil size eraser piec	e that fits in a drop	o size measureme	nt spoon. Stir for 1	I minute and let sit for re	mainder of 5
minutes. Test turbidity at the 5					
minute time.					
					1

3:05pm

ANINNESOLA ZOLELLO		Test #	12		ASSOCIATES Responsive partner. Exceptional outcomes.
Date: 8/11/16				ate Field Analyst(s):	
	14.5	(Templin (Wenck Associates,	
Site: 371 54	in Hetic	(rom (Wenck Associates, Inc	
			Other		
Product Tested: APS 706	b Floc Log (Applied Pol	ymer Systems, In	c.)	Significant Reaction?	Y (N)
Mixing Method: Slow Mix	(Stirring)			Reduction to < 50 NTU?	Y N
Sample Parameters:					U
Reading	Time (clock)	Temp (°C)	рН		ost-filter dity (NTU)*
Initial (Control)	9:20 J	-1.1	6.66	507.9	
Final	10:35 1	1.9 6	,04	372,6	337.4
Dosing Table:	9.57				
Starting Time (clock): Time Pre-filter Tu	0.7				
(min) (NTU)					
5 47Q.1	4				
Stir for 30 seconds	0				
	L conly				
25 400.7					
5 12-1	2				
Notes:					
* The filter used was a coffee filt	er.				
# Afly all bits 1	ivery cardid	, tribidity	was re	unys inte at 2	77.9
Mixing Guidance:					~ * * * 1
Add 1/2 pencil size eraser piece	e that fits in a drop size	/ e measurement sp	oon. Stir for 1	minute and let sit for rema	inder of 5
minutes. Test turbidity at the 5 n	ninute and 10 minute t	imes. Stir for 30 s	econds after 1	0 minute time. Test turbidit	v at the 15

Sheets and guidance developed through field testing of products

3:05pm

minute time.

of

Responsive partner. Exceptional outcomes.

Date: 0/11	/16	
Site: 371	(Synthetic)	

Product Tested:	APS	703d#3	and	APS	706b	Floc Log	(simultaneously)

(Applied Polymer Systems, Inc.)

Mixing Method: Slow Mix (Stirring)

ouis Sigtermans	Wenck Associates, Inc.
Jeff Strom (Wenck	Associates, Inc.)
Other	

Indicate Field Analyst(s):

Reduction to < 50 NTU?

Significant Reaction?

Sample Parameters:

Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial (Control)	9:20	21.1	6.66	507.9	San Strange
Final	10:37	21,8	5.90	395.1	335.8

osing Table) Startir	e: ng Time (clock): <u>9,5</u>
Time (min)	Pre-filter Turbidity (NTU)
5	501.9
10	497.9
St	ir for 30 seconds
15	488,8
20	470,1
St	1 Cw 20 seconds
25	418.5
30	395.1

Notes:

* The filter used was a coffee filter.

3:05pm # APAV 100 all wbi mas Nemeas dit

Mixing Guidance:

• Add 1/2 pencil size eraser piece that fits in a drop size measurement spoon for both products simultaneously. Stir for 1 minute and let sit for remainder of 5 minutes. Test turbidity at the 5 minute and 10 minute times. Stir for 30 seconds after 10 minute time. Test turbidity at the 15 minute time.

Dwayne Stenlund and Bruce Holdhusen Minnesota Department of Transportation March 3, 2017

Attachment F

Sample 5 (Grab samples from three separate BMPs from a Hwy 36 and Lex. Ave. construction site in Roseville)

Test Checklist

Responsive partner. Exceptional outcomes.

8/12/16 3/ LEXOSCON Date: Harry Site:

by Templin (Wenck Associates, Inc.) Ile Sigtermans (Wenck Associates, Inc
lis Sigtermans (Wenck Associates, Ind
Strom (Wenck Associates, Inc.)

		Product Test List	
Test #	Test Completed	Product Name	Manufacturer
1	X	Control	
2	X	Floc 06	Innovative Turf Solutions
3	\times	SCI-CW-A0	Standard Contracting
4		Earth Poly-Stable Plus	Earth and Road
5	\checkmark	Liquifloc 1%	Dober
6		LB2101 (first) then Liquifloc 1% (second)	Dober
7	X	Biostar-CH 2%	Hild and Associates
8		APL Bridger	Hild and Associates
9		Biostar-CH (first) then APL Bridger (second)	Hild and Associates
10		APL Bridger (first) then Biostar-CH (second)	Hild and Associates
11		APS 703d#3 Floc Log	Applied Polymer Systems, Inc
12		APS 706b Floc Log	Applied Polymer Systems, Inc
13		APS 703d#3 Floc Log and 706b Floc Log (simultaneously)	Applied Polymer Systems, Inc

Measurement Spoon	Equivalent Measurement	Volume Equivalent (fl oz)	Volume Equivalent (mL)
Drop	1/64 Teaspoon (1/2 Smidgen)	0.002604	0.07701
Smidgen	1/32 Teaspoon (1/2 Pinch)	0.005208	0.1540
Pinch	1/16 Teaspoon (1/2 Dash)	0.01042	0.3081
Dash	1/8 Teaspoon (1/2 Tad)	0.02083	0.6161
Tad	1/4 Teaspoon	0.04167	1.232

Flor (Innovative that Solutions NC) Pensity 89.31B/c.f. Specific Grand 2.65 HzO (watr) Density 1000 kg/m³ 62.41bs/cf Specific Grand 1 Stadard canhady (SCI-CW-AD) specific anning 2.05. Cignifler 1% Dersily 1-1.19/mL ~62.4165/cf.

Sheets and guidance developed through field testing of products Biostor CH 2% 1-1.156 NG2-4 164-79 cf.

	A DE TRANSPORT		Test #	1		ASSOCIATES Responsive partner. Exceptional outcomes.
	Date: 8/12/16	Έx	Oscar	Kirby Ter	alyst(s): nplin (Wenck Associates termans (Wenck Associates	ociates, Inc.)
	Product Tested: Control Mixing Method: No Mixing Method	1			Significant Reacti Reduction to < 50	and the second sec
	Sample Parameters:	1	1	1		
	Reading	Time	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
15trople	Initial	0:12	25.1	8.0	>(200)	
	Final					
15tsorple Znlsuple	Notes and	11:40	26.9	7.46	282.8 102.5	
	* The filter used was a coffee filter.	12:45	99.9	7.49	102.5	
-					1	

• There were no products tested in the control.

2

Indicate Field Analyst(s):

Other

Kirby Templin (Wenck Associates, Inc.) Louis Sigtermans (Wenck Associates, Inc.) Jeff Strom (Wenck Associates, Inc.) TOEL

Significant Reaction?

Reduction to < 50 NTU?

7650

Responsive partner. Exceptional outcomes.

N

C

d

3

1

2

Date:	Stille	
Site:	Huy 34 Elex	Oscar

Product Tested: Floc 06 (Innovative Turf Solutions)

Mixing Method: Rapid Mix (Shaking)

Sample Parameters:

	Reading	Time (clock)	Temp (°C)	pH	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
	Initial (Control)	10:12 am	25,1	8.00	>1000	A State State
Jesx [Final	10:48	28.1	6.31	104	21/

Time (min)	Dose Added (Spoon - Drop)	Cumulative Dosage (Spoon - Drop)	Pre-filter Turbidit (NTU)	Y
ь.	1	1		1
0.5	1	2	364	1
6.5	l	3	260	1
12	1	4	226	1
17.5	1	5	171	
23	4	9	99	
28.5	4	13	164	1
				1

* The filter used was a coffee filter.

Mixing Guidance:

Notes:

• Add 1 Drop (Measurement Spoon) to sample bottle, close lid, and shake for 5 seconds. Let sit to react for remainder

of 30 seconds. If reaction is noticed, wait remainder of 5 minutes to test the turbidity (Allows floc to settle). Repeat

until desired results.

Sheets and guidance developed through field testing of products

of (Test #2 Sheet

Responsive partner. Exceptional outcomes.

Date: Oscar 140 Site:

Product Tested: SCI-CW-A0 (Standard Contracting)

Mixing Method: Rapid Mix (Shaking)

Sample Parameters:

Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial (Control)	10:12	25.1	8.60	>1000	1. Standard
Final	10:45	27.6	7.94	38.6	26

Dosing Table:

15× 451

Notes:

Mixing Guidance:

until desired results.

* The filter used was a coffee filter.

Time (min)	Dose Added (Spoon - Drop)	Cumulative Dosage (Spoon - Drop)	Pre-filter Turbidity (NTU)
0	(1	
0.5	1	2	561
6.5	1	3	123
12	1	4	91
17.5	4	8	51.8
23.5	4	12	39.6

Indicate Field Analyst(s): Kirby Templin (Wenck Associates, Inc.)

Louis Sigtermans (Wenck Associates, Inc.)

Jeff Strom (Wenck Associates, Inc.)

Other JUEL TOSO

Significant Reaction? (Y) N

Reduction to < 50 NTU? Ν

11:

ð

0

Don

2

2

2

2

8

Due

0

8

16

500

Test #3 Sheet

le

• Add 1 Drop (Measurement Spoon) to sample bottle, close lid, and shake for 5 seconds. Let sit to react for remained of 30 seconds. If reaction is noticed, wait remainder of 5 minutes to test the turbidity (Allows floc to settle). Repeat

12

Indicate Field Analyst(s):

Jen Strom (Wenck As

Dughe

Other

tree

Kirby Templin (Wenck Associates, Inc.)

34

Significant Reaction?

Reduction to < 50 NTU?

ociates, Inc.)

010

ph .

entre

Responsive partner. Exceptional outcomes.

N

8/12 Date: E)Sca Site:

Product Tested: Liquifloc 1% (Dober)

Mixing Method: Slow Mix (Stirring)

Sample Parameters:

Sample Parameters:						
Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*	
Initial (Control)	10:12m	25.1	8.00	>1000	State of the second	\square
Final	11:19	28,9	7.87	40.46	34 24	
Dosing Table:					- 1. 2	and Par for
Starting Time (clock):	11:00			\sim / I	2:06 (sit	Pernit Post for
Time Dose Ad	ded Cun	nulative Dosage	Pre-filter Tur	bidity	ling Das.	Cm
(min) (Drop)	(Drop)	(NTU)		a pin	dox
C	·	-2	140,	0	0 5	S
20		4	57.	66	1.5 1	6
11 11 2		6	40,4	6 / -		6
					2 2	8
					2	
					5 2	(0
					10	
				(.5 5	115
Notes:						V
* The filter used was a coffee fi	lter.					7
				11.51	Jap e	5 7
						c /
			/		Desal	
3					Dright	5.
				Differ		
Mixing Guidance:				10		
Add 1 drop and stir for 5 seco) for Initial
If reaction is noticed, wait rema	inder of 5 minut	es to test the turbic	aity (Allows floc to :	settle). Repeat until	desired results.	

	ARTHINNESOLA JOLIVILA			Test # 7			EXERCISE ASSOCIATES Responsive partner. Exceptional outcomes.		
	Date: Site:	, 36	-CH 2% (Hild a	OSCAR	Kirby T Long	ite Eield Analyst(s Templin (Wenck Asso Sigtermans (Wenck / Tom (Wenck Associa Tom (Wenck Associa Tom (Wenck Associa Tom (Wenck Associa Significant React	bociates, Inc.)		
	Mixing M Sample Parar	ethod: <u>Slow M</u> neters:	lix (Stirring)			Reduction to < 5	<u>0 NTU? (Y) N</u>		
		ding	Time	Temp	pH	Pre-filter	Post-filter	~	
	Initial ((clock)	(°C)		Turbidity (NTU)	Turbidity (NTU)*		
10		nal	10:12	296	8,00	40.57	30.24	A AC	
fer	Dosing Table:	Trida i de	11.20	and	1.01	10.11	30	Crn Crn	
		Time (clock):	11:01			5	upled Cher	serinition	
(/	Time (min)	Dose A (Dro	dded Cu	umulative Dosage (Drop)	Pre-filter Tur (NTU)	bidity	Im Dose	Com	
1	O	,		7	120-1	\rightarrow	0 5	5	
XOX .	7.5 1	3	-	4	580	Id A	1.5 3	8	
(c	12 10	0			40:2		421		
						7 -	1.3 2	10	
							9.5 5	115	
							0 15	120-	
							20 3	Place	
	Notes:							الأبراج	
	* The filter use	d was a coffee	filter.						
	8					Carle	23		
						JUUF	Dista	e 15	
	3					[2-50	The contract of the second sec	~ ! >	
	<u>5</u>					chide.	noto Dozu	v S	
	Mixing Guidar					(a)the	int pont	1,20	
			onds. Let sit to	react for remainder o	f 30 seconds. If no	o reaction is noticed	repeat.	naj	
			10.0	utes to test the turbid					
						(6		1	
							1		

-75

Dwayne Stenlund and Bruce Holdhusen Minnesota Department of Transportation March 3, 2017

Attachment G

Sample 6 (Runoff grab sample from a Hwy 96 construction site in the north metro)

Test Checklist

Responsive partner. Exceptional outcomes.

Date: Date: Birch Lake site Field Analyst(s): Kirby Templin (Wenck Associates, Inc.) 964 Louis lates, Inc.) Hu Jeff Strom (Wenck Associates, Inc.) Other Duarne enund

Product Test List						
Test # Test Completed		Product Name	Manufacturer			
1	\times	Control	8.)			
2	X	Floc 06	Innovative Turf Solutions			
3	×	SCI-CW-A0	Standard Contracting			
4		Earth Poly-Stable Plus	Earth and Road			
5	×	Liquifloc 1%	Dober			
6		LB2101 (first) then Liquifloc 1% (second)	Dober			
7	×	Biostar-CH 2%	Hild and Associates			
8		APL Bridger	Hild and Associates			
9		Biostar-CH (first) then APL Bridger (second)	Hild and Associates			
10		APL Bridger (first) then Biostar-CH (second)	Hild and Associates			
11		APS 703d#3 Floc Log	Applied Polymer Systems, Inc.			
12		APS 706b Floc Log	Applied Polymer Systems, Inc.			
13		APS 703d#3 Floc Log and 706b Floc Log (simultaneously)	Applied Polymer Systems, Inc.			

Measurement Spoon	Equivalent Measurement	Volume Equivalent (fl oz)	Volume Equivalent (mL)
Drop	1/64 Teaspoon (1/2 Smidgen)	0.002604	0.07701
Smidgen	1/32 Teaspoon (1/2 Pinch)	0.005208	0.1540
Pinch	1/16 Teaspoon (1/2 Dash)	0.01042	0.3081
Dash	1/8 Teaspoon (1/2 Tad)	0.02083	0.6161
Tad	1/4 Teaspoon	0.04167	1.232

A ANNINNESOLA JOLETHO	Test #	1	ASSOCIATES Responsive partner. Exceptional outcomes.
Date: <u>9-6-16</u> Site: <u>Birch Jahr Site</u>	Huy 96 Livh J	Field Analyst(s): Kirby Templin (Wenck Assoc Louis Sigtermons (Wenck Associate Jeff Strom (Wenck Associate	seciates, Inc.)
Wir	side Bearthen	Significant Read	ion?
Mixing Method: No Mixing Method		Reduction to < 5	ONTUZ P N
Sample Parameters:		517.8	
Reading	Time Temp (°C)	pH Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
Initial	11:50m 16.09	8.29 40000	
Final			
Notes: * The filter used was a coffee filter.			
• The control is a reference that can be u	Early Million Control	from the products that were teste	ed.
• There were no products tested in the c # collected zogl # This is f of po		Noth 6 76-7 padjulie ve s The differe	arold Fun surtau
Sheets and guidance developed through field t	testing of products	Test #	1 Sheet of

	MINNESOLA					VA	V
	ARTIN INNESOLA JOLELLA		Te	ASSOCIA Responsive p Exceptional of	ATES		
	9-6	-16		Indica	ate Field Analyst(s)		
	Date:	10			Femplin (Wenck Asso		
	site: Birch Tak	usite	Huy 96t	white Jeff St	Sigtermans (Wenck A From (Wenck Associat		
		wrisid	e Bo	Avenue Other	Dwayne st	1 1	
	Product Tested: Floc 06	(Innovative Turf Sol	lutions)		Significant React	ion? Y N	
	Mixing Method: <u>Rapid I</u>	1ix (Shaking)			Reduction to < 50	<u>о NTU? (7) N</u>	
	Sample Parameters:						
	Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*	
	Initial (Control)	11:50 mm	16.09	8.29	517.8		1
ъ.	Final	11:10 + final	15,86	4.26	103.0	-tay of totes	F
а Х	Dosing Table: Nopid H	11-00.000		Controlm	533.3		
Xc	Starting Time (clock):		ative Dosage	Pre-filter Tur	bidity		
- CON	(min) (Spoon -		on - Drop)	(NTU)	world NSmi	reaction	Jooks the 1
8-0)04	maria		2 A	05.0	6	Treaction	clan.
New	0 4		4	195.2	1		
1252	1		5	18-63	Post	FFill NTU	10.91
104					A Dovo	ear Mehsuren	+ 1057
				/	Lake	Longer Ala	hourse .
					TU	- tester	2:10
				/	te	m	24.81
	* The filter used was a coffee	filter	that we	a consect te	PH	1-1-10	6,63
		D	posage we		Co,	nductivit -	2 2715
			0	tinal		1-	
	Mixing Guidance:						
	Add 1 Drop (Measurement S	poon) to sample bott	le, close lid, and	d shake for 5 secor	nds. Let sit to react fo	or remainder	
	of 30 seconds. If reaction is no	iticed, wait remainde	r of 5 minutes t	o test the turbidity	(Allows floc to settle	e). Repeat	
	until desired results.					1)

	OF TRA	OPTATION 41		Te	st # 3		ASSOCIAT Responsive part Exceptional outco	ES
		9-6	-16		Indica	te Field Analyst(s)		
	Date:	10	1 10			emplin (Wenck Assoc)	
	Site: Bire	h lake	sile. Weirs	Huy 964 W ide Bea		om (Wenck Associate Durwyne St	200	
	Product Te	sted: SCI-CW	/-A0 (Standard C	Contracting)		Significant Reaction	on? (Y) N	
	Mixing Met Sample Parame	thod: <u>Rapid M</u>	lix (Shaking)			<u>Reduction to < 50</u>	NTU? N	
	Readi		Time	Temp	рН	Pre-filter	Post-filter	
	Initial (Co		(clock)	(°C)	8,29	Turbidity (NTU) 517,8	Turbidity (NTU)*	
	Fina	4		1140	7.99	1720	104	
	Dosing Table:	Rogid Fe	ist Alactresi	ths.	Carductority	349.5	10 12	
		ime (clock):	12:0	OPY	/			
(Time (min)	Dose Ad (Spoon -		mulative Dosage Spoon - Drop)	Pre-filter Turl (NTU)	pidity		
\sim		(spoon-	1	1 Tend	12	Amenen	1	
20	5	ITa	2	2 Tad	99,7	9		
One	R	Ta	id	STad	121.0	2		
~		170	d	ytord	172			
m	- 22	22	r	22	1.2	e ,	hew say	Tert
12:52 pa	$1 \int$		Idrop	Jorel	nona	c folin	- Contraction of the second se	
	¥		Idrop	2 drop				
	X		1001	30,005	111 5		E .	1.2.02
X	J.		Coor	Sarops	111.8	×	lime -	2.04m
-Dr.	* The filter used	was a coffee f	ilter. drop	6 draps	973		Temp	24.93
-2	- The flicer used	was a conee i	Dalla	5 8drops	70.85		PH	8 in
Cars		2	Jugara	lodiops	63.54		condut	Da 74. 2
1-31			Ddope	12 drop	5 47.44	3		72.74. J
AL				1	28.6	7 6	The filter	
	Mixing Guidanc	e:						
				- And the second second	C	ds. Let sit to react fo		
			ticed, wait rema	inder of 5 minutes t	to test the turbidity	(Allows floc to settle). Repeat	
	until desired resu	lts.				1 ¹		

	SPARTINI NNESOLA JOLIVLA	T	est # 5	ASSOCIATES Responsive partner. Exceptional outcomes.
	Date: 9- site: Biech lake	-6-16 site. thuy 96t weirsite Be	while While While While While While While While While While While While While While While While While While Wence While Wence	ssociates, Inc.)
	Product Tested: Liquific		Significant	
	Mixing Method: <u>Slow M</u> Sample Parameters:	lix (Stirring)	Reduction t	to < 50 NTU? Y N After filtention
	Reading Initial (Control) Final Dosing Table:	Time Temp (clock) (°C) (1):50 an (6.69 sthill 16.47 (2:13)	pH Pre-filt Turbidity (8.29 517, 7.43 73.9 (anductivity 251.5	NTU) Turbidity (NTU)* 8
Digering 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Time Dose Ar (min) (Dro Control of Control o		Pre-filter Turbidity (NTU) 100.2 73.97 2220000000000000000000000000000000000	slikey wild he filled to SONTA- Record for the Heating Particle
Find.	Notes:	8 12 4 16 4 16 4 16 10 filter.	189.0 101-8 71.89 59.76 ->	Filder is 40.16
			Tim Teng PH Conc	1: 2:00,00 24.97 + 7.89 tvch.Viz 220;6
			er of 1 minute. If no reaction is noti Irbidity (Allows floc to settle). Repea	
			<i>K</i>	

Sheets and guidance developed through field testing of products

Test #5 Sheet _____ of ____

	ANTININESOLA NOLELLO		Tes	st # 7		ASSOCIATES Responsive partner. Exceptional outcomes.
	Date:	6-1b			te Field Analyst(s)	
	site: Birch la	he site beir side	they 96 t	i he T	om (Wenck Associate	
	Product Tested: Biostar	-CH 2% (Hild and	d Associates)		Significant Reaction	on? (Y) N
	Mixing Method: Slow M	ix (Stirring)			Reduction to < 50	
	Sample Parameters:					
	Reading	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU)*
	Initial (Control)	11:50 nm	16.09	8.29	517.8	
	Final	12:41	16.04	Conductiviz	82.00	30.95
	Starting Time (clock):	12:12	S	c oury	263-7	
C	Time Dose Ad (min) (Dro		nulative Dosage (Drop)	Pre-filter Tur (NTU)	bidity	
	yer (s	drop	15drops	89-28		
,rol	15	drop	30 drop	41.24		
21101	1.80 /Sa	200	45dop	82.00	-010	Rene
13125	remain 2.2	gor	2 Evors	10 real	ch	new Test
	5°X 22	nje	4 doups	238.4		
N.	X Ja)DC	6 drops	166.5		
Dure of	1 des	Pst	14 drops	120.5	- un filler	~ 4
3	Notes:	-	~	77.6	0 filtere	5
Sh	* The filter used was a coffee	filter. 6 de	ps) 200m	ps \ 46.	JZ until	ferid word
				- + I:	90 1700	
					Time 2:000	2m
	2				PH 7,66	
	Mixing Guidance:	1		0	1 /2 -	22.6
d.	Add 1 drop and stir for 5 sec	onds. Let sit to re	eact for remainder o	of 30 seconds. If no	reaction is noticed,	repeat.
	If reaction is noticed, wait rem	ainder of 5 minu	tes to test the turbio	dity (Allows floc to	settle). Repeat until o	desired results.

Sheets and guidance developed through field testing of products

Dwayne Stenlund and Bruce Holdhusen Minnesota Department of Transportation March 3, 2017

Attachment H

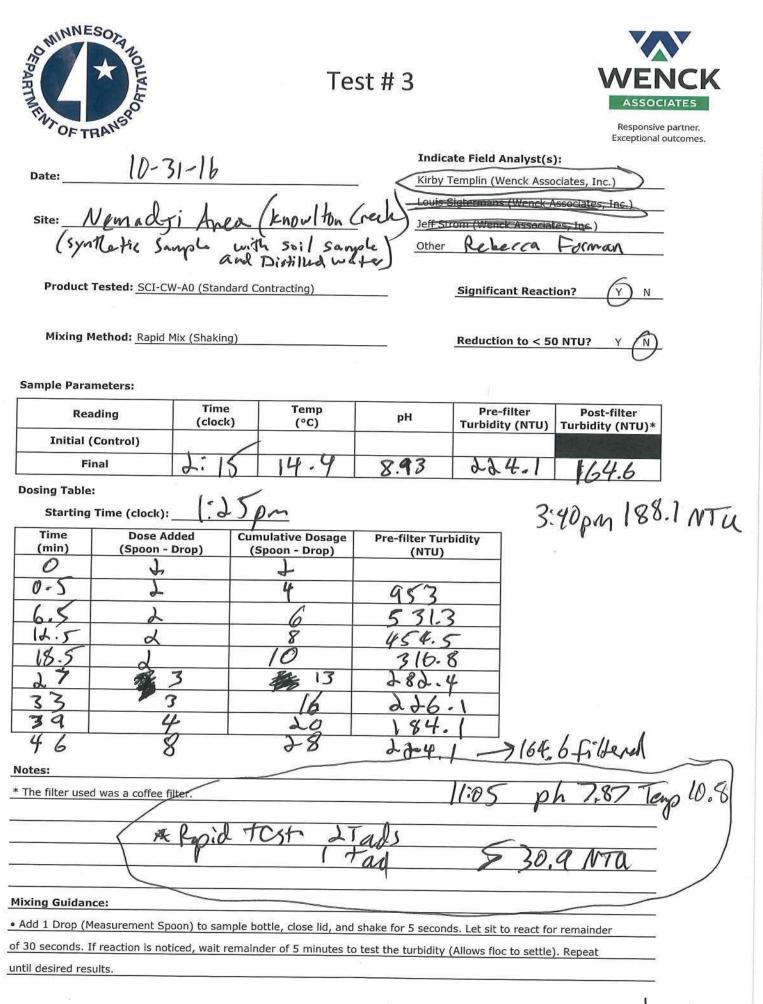
Sample 7 (Synthetic sample made from a Nemadji River construction site soil and distilled water)

Test Checklist

Responsive partner. Exceptional outcomes,

10-31-16 Field Analyst(s): Date: Kirby Templin (Wenck Associates, Inc site: <u>Nemadji Ana</u> (knowto Gynthic Sample with soil sam Distilled h Lot Inc Knowton Jeff Strom (W Other rma N

	Product Test List							
Test #	Test Completed	Product Name	Manufacturer					
1	X	Control						
2	X	Floc 06	Innovative Turf Solutions					
3	×	SCI-CW-A0	Standard Contracting					
5	X	Liquifloc 1%	Dober					
7	X	Biostar-CH 2%	Hild and Associates					


Measurement Spoon	Equivalent Measurement	Volume Equivalent (fl oz)	Volume Equivalent (mL)
Drop	1/64 Teaspoon (1/2 Smidgen)	0.002604	0.07701
Smidgen	1/32 Teaspoon (1/2 Pinch)	0.005208	0.1540
Pinch	1/16 Teaspoon (1/2 Dash)	0.01042	0.3081
Dash	1/8 Teaspoon (1/2 Tad)	0.02083	0.6161
Tad	1/4 Teaspoon	0.04167	1.232

SPARTINE SOLA NOLELAO		Test #	1		ASSOCIATES Responsive partner, Exceptional outcomes.	C
10-31-1	6		Field A	nalyst(s):	0.01396039994 3 3663976323233555944249834995594424365559	
Date: 10- 5. 7k		<	Kirby Te	mplin (Wenck Asso	ociates, Inc.)	
site: Nemadri Arcal (synthetic Samplewit	knowly	ton (seek)		ytermans (Wenck /		
(synthic Sample with	the soils	amphal	Other R	m (Wenck Associa		
Di Di	the soils	water,		COLLIA	forman	
Product Tested: Control				Significant Rea	ction? Y N	
				\mathcal{O}		
Mixing Method: No Mixing Method	1			Reduction to «	50 NTU? Y N	-
Sample Parameters:		8				
Reading	Time	Temp (°C)	pН	Pre-filter Turbidity (NTU	Post-filter) Turbidity (NTU)*	
Initial	10:30 am	10-8	9.58	>1000	, rublacy (wro)	
Final						4 8
					1962 10	
Notes:						
* The filter used was a coffee filter.						
# Duayne Collacted di	70/11/1	C. A X		. 1 +11		di Ca
	too.	MTh &	om S.	auplis 2	> 1000 NTU	AMIC
- /			104			
3						
	au es	12-30 and				
• The control is a reference that can be		re the results fr	om the prod	ucts that were test	ed.	
 There were no products tested in the c 	control.	12				

OFT	RANS							ve partner. al outcomes.
Date: Site: (Sy	10-3	nea (kn	on Hondred in soil sav stilled water inf Solutions)	Kirby	Rebec	enck Associa (Wenck Ass Associates	Exceptiona ates, Inc.)	al outcomes.
Mixing M Sample Para	lethod: <u>Rapid N</u>	1ix (Shaking)			Reduction	n to < 50 N		_
		Time	Temp	200300	Pre-fi	iltor	Post-filter	٦
Rea	ding	(clock)	(°C)	рН	Turbidity		urbidity (NTU)*	c .
Initial (Control)	- Marker A	WAAA		Alle			
Fi	nal [70		(13.)	MUNGVIST	蘣 MMM	110/ 45,4	3 16.87	
Dosing Table				7.0	61			
Starting	Time (clock):						3:70pm	19-14 NTU
Time (min)	Dose Ad		mulative Dosage	Pre-filter Tur	bidity			-4
\wedge	(Spoon -	Drop)	(Spoon - Drop)	(NTU)	The second	000		
Ĩ			2	7/0			0	
75	1		3	900	. <u>'</u>	Fil4	nd	
135	1		<i>u</i>	781	1	Tig -	17	
21.5	i			ue.	42			
	<u>\</u>		2	13.		16.8		
								_
Notes:	3			\checkmark				
* The filter use	d was a coffee fi	ilter.		/			1	- \
(UR Re	apid te	est ITal ITad	(]:0	<u>з</u> р	h 4.9	18 Teys Mt (]]0,8) - -
Mixing Guidan	ce:							~
• Add 1 Drop (M	leasurement Sp	oon) to sample	bottle, close lid, and	shake for 5 secon	ds. Let sit to	o react for r	emainder	-
			inder of 5 minutes to					

õf

styft

Test #5

OFTF	AMAN						onal outcome	
	10-31-	-16			te Field Analyst(s			
Date:	10 -1				emplin (Wenck Asso			
M	(ana)	A G	allo Car		igtermans (Wenck A			
Site: /V/	Maaji	meal H	a ils	- Jeff Str	om (Wenck Associat	2		
(277	Tupic So	inple Will	willon Cree h soil san tilled wate	Other	Riberca 1	-Orman		
Product 1	rested: Liquiflo				Significant React	ion? (Y)	<u>N</u>	
Mixing M	ethod: <u>Slow M</u>	ix (Stirring)			Reduction to < 50		N	
Sample Parar	meters:					al	ver cell	12.
Rea	ding	Time (clock)	Temp (°C)	рН	Pre-filter Turbidity (NTU)	Post-filter Turbidity (NTU	J)*	
Initial (Control)					No. 19 Sector 1		
Fir	nal	2:00pm	13.8	8.1	183.0	118.6 tive add	1 toto	d
Dosing Table:		ſ	1	3:40 pm . 2	8.941111	ad	That 1	NHU Di
Starting	Time (clock):	1:08		3.40 pm		fine	-)-1	1111
Time	Dose Ad	lded Cun	nulative Dosage	Pre-filter Tur		26 5	34	185.
(min)	(Drop	o)	(Drop)	(NTU)		31.5 5	391	
- 4	ىل		4				1.12	30.
	T		1			39 5	44 19	83.0 1B.
7	<u>ل</u> 2		6					
3	3		4					/
4			12-					1
5	4		(6	cale (-			
6	4		14	854.	1			1
15	4		29	497.	0	V /)
40	5		79	339	2	\sim)
Notes:				11.0	1-70	1 1	10	5
* The filter used	d was a coffee f	ilter.		fl-ll p	h 7.8	Semp K	<u>).</u> D	\backslash
	/			/		V		
T K	0 11	PIN 10	• •	10 00	~	Imail	THI.	
<u> </u>	Kapid 7	UST K	diffs	10 drops		571.41	viu	
	104	+1	Somp>	64 			- /	
			•					
lixing Guidan			2018-25°2 WF 7/2	2 				
Add 1 drop an	d stir for 5 seco	onds. Let sit to re	act for remainder o	of 1 minute. If no re	action is noticed, re	peat.		

If reaction is noticed, wait remainder of 5 minutes to test the turbidity (Allows floc to settle). Repeat until desired results.

of_)

Responsive partner. Exceptional outcomes.

									Exceptional outcomes.
	10-7	1-16				Indica	te Field Analy	st(s):	
Date:	10-5	1-10			. <	Kirby T	emplin (Wenck	Associ	ates, Inc.)
1		٨	N/	12 1/2. (1)	touiss	Siglermans (Wer	ick As	sociates, Inc.)
Site:	1emadzi	Anea	.)[/	VOWITUN C	peck)	Jeff St	om (Wenck Ass	ociate	s. Inc.)
(\$	ynthic	sanply	tille	Nowlton (inthe soil of water	sample)	Other	Rebecc	aF	or man
	fested: Biostar						Significant R	eactio	on? Y N
	ethod: <u>Slow M</u>	ix (Stirring)			<u></u>		Reduction to	< 50	<u>NTU? Y (N)</u>
Sample Parar	neters:								
Rea	ding	Time (clock)		Temp (°C)	pН		Pre-filter Turbidity (N		Post-filter Turbidity (NTU)*
Initial (Control)			(-)			Turbiancy (IV		
Fir	nal	3:31		15.2	\$.:	7	116.4		171.8
Dosing Table:									
Starting	Time (clock):	d:40)				1.0	9pm	107.1
Time (min)	Dose Ad (Drop	and a second	Cumu	llative Dosage (Drop)		ter Turl (NTU)	bidity		
n	3			3		(110)			
Ĩ	2			ĥ					
1,5	3			9	7	1000)		
7.5	3			id	.9	36	3		
13,5	3			15		58	9		
19.5	3			18	6	6.4	4		
25.5	4			22	16	I.Q			
31.5	S	-		27	28	9.8	-		
32.5		5		32	25	4.	3	-	filterd
Notes:		5 1		- 87	2	6.4		1.8	FI (104
* The filter used	l was a coffee fi	ilter.	/				\rightarrow		
		/			11:10	· · p	h 8.09	5 -	Temp 10.7
						U			0
———	* Rap	id 10	12	15		17		۸A-	TTA /
		,	1	0		~3)/.(14	
Mixing Guidan									
				t for remainder o					
If reaction is not	iced, wait rema	inder of 5 m	ninutes	to test the turbic	lity (Allows	floc to s	settle). Repeat ι	intil de	esired results.

of

APPENDIX I PHOTOS

Responsive partner. Exceptional outcomes.

- To: Dwayne Stenlund and Bruce Holdhusen, Minnesota Department of Transportation
- From: Kirby Templin, Jeff Strom, and Louis Sigtermans, Wenck Associates, Inc.
- **Date:** March 3, 2017
- Subject: Photos Memorandum

This memo includes photos taken throughout the course of the study of field sampling and testing, and photos of the samples test results.

1. Field Sampling and Testing Photos

Photo 1. Tailgate Test Kit being used in the field

Dwayne Stenlund and Bruce Holdhusen Minnesota Department of Transportation March 3, 2017

Photo 7. Field equipment used for tailgate test (left to right) Stopwatch, turbidity meter, plastic disposable pipette, and pH meter

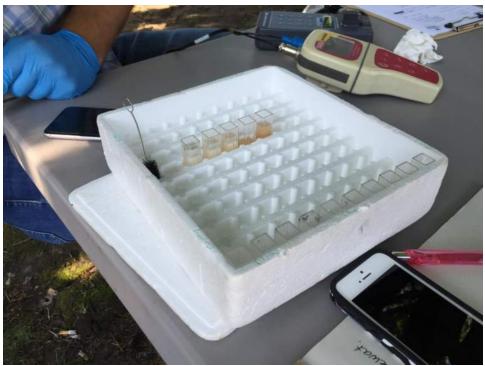


Photo 5. Samples in plastic cuvettes to be measured by a turbidity meter

2 I-2

Photo 3. Field analysts performing a test with the Tailgate Test Kit

Photo 4. Field analyst adds dry powder product to a sample

Photo 6. Dry powder product is added to a sample using a drop measuring spoon

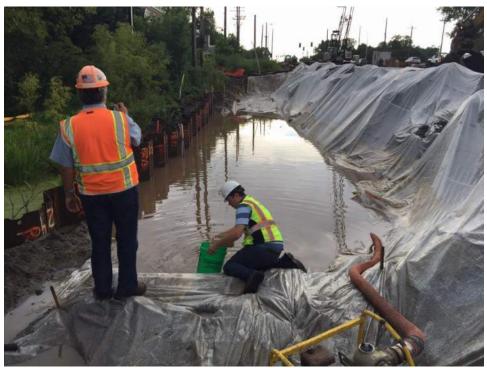


Photo 8. Field analyst collects a grab sample or construction stormwater runoff

T:\0791 MnDOT\44 Tailgate Test Kit\Task 4 - Field Testing\Photos MemorandumV2.docx

Photo 9. High turbidity construction stormwater runoff

Photo 10. High turbidity runoff in a ditch at a construction site

5 I-5

Photo 11. Construction site after recent rainfall event

Photo 12. Dewater activity at a construction site

Dwayne Stenlund and Bruce Holdhusen Minnesota Department of Transportation March 3, 2017

Responsive partner. Exceptional outcomes.

Photo 13. Construction stormwater discharged from a dewatering pump



Photo 2 – Settling Tank for construction stormwater discharge

7 1-7 **Dwayne Stenlund and Bruce Holdhusen** Minnesota Department of Transportation March 3, 2017

2. Sample Test Results

Photo 15. Sample 2 Results (Highway 53) Tests #1-13 in order from left to right

Photo 19. Sample 3 Results (St. Paul Technical College) Tests #1-13 in order from left to right

Photo 16. Sample 4 Results (Highway 371) Tests #1-13 in order from left to right

Photo 14. Sample 5-1 Results (Highway 36 and Lexington Ave) (left to right) Tests # 1, 2, 3, 5, and 7

9 I-9 **Dwayne Stenlund and Bruce Holdhusen** Minnesota Department of Transportation March 3, 2017

Photo 17. Sample 6 Results (Highway 96) (left to right) Tests # 1, 2, 3, 5, and 7

Photo 18. Sample 7 Results (Nemadji) (left to right) Tests # 1, 2, 3, 5, and 7

> 10 I-10

Responsive partner. Exceptional outcomes.